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PREFACE

This book is a sequel to an earlier publication of ours, Neocortical Development (Bayer and Altman, 
1991), which dealt mainly with the development of the rat neocortex.  That book was based to a large 
extent on an analysis of several large collections of brains prepared in our own laboratory.  The first 
one was a collection of paraffin embedded and cell-body stained histological sections of complete 
embryos or dissected brains, ranging in age at daily intervals from embryonic day 11 (E11) until 
birth (E23/postnatal day 0).  We used that material for easy visualization of the development of the 
neocortex and some related forebrain structures at low magnification as a function of prenatal age.  
The second was a collection of thinner sections of brains embedded in methacrylate, systematically 
cut in the coronal, sagittal and horizontal planes and providing better cellular detail, which allowed 
visualization of the growth and differentiation of neocortical neurons at higher magnification.  The 
third was a vast collection of brains from rats that were injected with 3H-thymidine during the 
prenatal period to label the DNA of multiplying precursors of neurons and glia.  Specimens were 
killed 2 hours after injection, at 24 hour intervals after injection, or as adults after multiple injections.  
The thymidine autoradiographic material was prepared with three variants of the technique.  The 
first survival set (2 hrs), referred to as short-survival autoradiography, allowed us to identify the 
site and time of origin of forebrain and neocortical neurons from proliferative precursor cells in 
the neuroepithelium (NEP) with their regional gradients.  The second survival set (24 hr intervals), 
referred to as sequential survival autoradiography, allowed us to track the migration and settling 
pattern of the differentiating neocortical neurons.  This led to the identification of the stratified 
transitional field (STF), the transient region between the neuroepithelium and the cortical plate 
(gray matter), where the migrating neurons sojourn before proceeding to settle in the cortical 
plate (also called the intermediate zone).  We hypothesized that the differentiating “unspecified” 
neurons become ”specified” in the STF in terms of their modality and topographic identity.  The 
third set, called long survival autoradiography after multiple injections of 3H-thymidine, allowed 
us to quantify the time of origin of neurons that settled in different layers of the neocortex in adult 
rats.  The multiple injections nearly eliminated the label dilution problem and enabled us to divide 
neuronal populations into either unlabeled (neurons generated before injections began) or labeled 
(neurons generated after injections began).
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With that background in the analysis of some aspects of the morphogenetic development of the 
simpler, smooth (lissencephalic) neocortex of the rat, we turn now to an investigation of the 
development of the far more complex foliated (gyrencephalic) human neocortex.  The brains that 
we have used for that purpose and illustrate in this book were not prepared in our laboratory.  
Rather, we turned to other sources.  One was the published gross-anatomical and histological 
studies of the developing human neocortex, dating back as far as the end of the 19th century, much 
of it unavailable and forgotten by contemporary researchers.  These included the large collection of 
developing human brains by Gustaf Retzius towards the end of the 19th century; the work of Cecilie 
and Oscar Vogt early in the 20th century concerned with the fiber development and myelination of 
the infant brain; and the 8 volumes on postnatal brain development early in the second half of the 
20th century by Leroy Conel.  The other source was the large archive of photographs that we have 
collected in the 1980s, using the Collections of histologically prepared developing human brains, 
housed at the National Museum of Health and Medicine, at that time located on the campus of 
the Walter Reed Army Hospital, in Bethesda, Maryland.  The three Collections that we have used 
were prepared by Charles Minot early in the 20th century, the staff of the Carnegie Institution a few 
decades later, and by Paul Yakovlev early in the second half of the 20th century.  We found many 
of the sections fading and becoming useless and sought to salvage the best preserved of them for 
future use by photographing them and digitizing the photos. 

Our knowledge of the development and organization of the brain comes from many sources.  
Embryologists, neuroanatomists, and neuropathologists have been studying the morphological 
development of the brain and the formation of the its circuitry in animals and humans for over 
150 years, ever since techniques have become available to preserve postmortem neural tissue 
and use stains to visualize nerve cell bodies and their axons and dendrites.  The earlier studies 
focused on the dissection of the brains of animals and humans at different stages of development 
and analysis of the morphogenesis of different brain structures.  That was followed by selective 
destruction of different brain regions in experimental animals and subsequently tracing the 
trajectory of degenerating fibers, some of them originating in the neocortex, others targeting it.  A 
highly successful later technique included the injection of anterograde and retrograde tracers into 
selected brain regions of experimental animals, followed by a postmortem analysis of the origins, 
trajectories and targets of the tagged fibers.  These experimental methods could not be used in 
humans.  The major source of information that we have about the structural organization of the 
developing human central nervous system (CNS) in general, and the neocortex in particular, had 
to come from the brains of aborted embryos, fetuses, stillborn neonates, and infants that died from 
causes other than brain pathology.  These specimens were histologically prepared for microscopic 
analysis and we present some of them here.  

The last few decades has seen the introduction of minimally-invasive approaches to study brain 
development in living preterm babies, neonates, infants and young children using scanning 
techniques such as magnetic resonance imaging (MRI), positron emission tomography (PET), 
and diffusion tensor imaging (DTI).  As of the present time, the most rewarding procedure has 
been MRI scanning and visualization, which is based on the computerized determination of the 
substantial difference in the free water content of three components of the brain: the ventricles 
filled with cerebrospinal fluid; the soft cortical gray matter; and the more compact white matter.  
That differential provides useful images of the changing material composition of the developing 
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brain as a function of age.  However, the resolution that MRI currently provides is macroscopic 
rather than microscopic, hence it is limited to visualization of gross changes in brain development.  
MRI cannot be used for the study of morphogenetic changes at the cellular level, and it is not 
suitable for tracking intrauterine brain development.  (Ultrasonic scanning has been a good source 
of following intrauterine body growth and movement but not of the development of the soft brain 
tissue.)  These new “high-tech” based “modern” approaches have greatly advanced the diagnosis 
of early brain abnormalities and are proving to be a promising approach in the neuropsychological 
study of brain-behavior correlations in adults.  They have yet to become a rewarding research 
technique to further our knowledge of human brain development at the microscopic level of 
resolution.  As a matter of fact, most of what we currently know about human prenatal and early 
postnatal brain development on the cellular and subcellular level is based on classical postmortem 
studies using various histological and cytological staining techniques.  The purpose of this book 
is to review that information and encourage research scientists to pursue that “low-tech” and 
rewarding “classical” approach.  

This book is divided into an introductory section and two parts.  Part I consists mainly of 
photographic illustrations of microscopic transformations, and at later stages also visible changes 
in the development of the neocortex, beginning with the initial emergence of the neocortex in 
embryos during the mid-first trimester of gestation through the fetal stages of the second and 
third trimesters, and ending with infants and young children.  We provide each illustration with 
extensive commentaries, with emphasis on highlights of developments taking place during each 
stage.  Part II offers interpretations and hypotheses based on the illustrations presented, as well as 
information that comes from other sources, with much of it carried out in experimental animals.  
Thanks to the availability of computerized resources, we have been able in the last few decades to 
prepare our books as camera-ready copies that were printed and distributed by different publishers.  
Their sale was a source of revenue that financed the preparation of those books.  We have recently 
received some unsolicited funds (an award from the Prince of Asturias Foundation in 2011, and 
another from the Japan Society for the Advancement of Science in 2012) and are in a position 
to bypass the publishers and put this book directly on the Internet, thus making it available free 
of charge by students, researchers, and perhaps the occasional layman, social worker or official 
interested in the topic of early human brain development.
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INTRODUCTION AND BACKGROUND

 The structural and functional organization of the mature human central nervous system (CNS) 
in general and of the neocortex in particular is the end product of a complex developmental 
process.  As in other vertebrates, that development consists of a series of sequential morphogenetic 
transformations that begins with the proliferation of the precursors of neurons and glia; the 
migration and differentiation of young neurons; followed by the neurons sprouting axons and 
dendrites and forming synapses; and ending with the myelination of the axons of the fiber tracts.  
That partially overlapping sequence is uniform throughout much of the CNS but with a different 
timetable for its different components from caudal to rostral—the spinal cord, medulla, hindbrain, 
and forebrain—with the neocortex being among the latest-maturing brain regions.

The first event in CNS development is the proliferation of the precursor cells of neurons and 
neuroglia in a specialized germinal matrix, the neuroepithelium.  Initially flat, the neuroepithelium 
(NEP) folds and fuses, and forms the fluid filled neural tube caudally and the brain ventricles 
rostrally.  The next developmental event is neurogenesis, the progressive differentiation of many 
NEP precursor cells into postmitotic neurons.  The young neurons leave the NEP and migrate along 
radial and tangential routes to settle in various terminal locations.  Other precursor cells leave the 
NEP to form secondary (subventricular or subpial) germinal matrices, while still others retain their 
proliferative potential and multiply in the maturing or mature brain parenchyma as supporting glial 
cells.  The second event in CNS development is the maturation of neurons and glia throughout 
the parenchyma of the brain and spinal cord.  Neurons differentiate in four phases that may occur 
either simultaneously or in sequence.  Part one of this differentiation is axonogenesis.  Some 
neurons sprout long afferent axons that convey information from the sense organs to projection 
areas of the CNS.  Other neurons sprout shorter axons that feed-forward and feedback information 
from one processing center to another.  Still other neurons sprout long efferent axons that carry 
commands from motor brain regions in the brain and spinal cord to the muscular system.  Part 
two of this differentiation is dendrogenesis, when neurons sprout dendrites that assume different 
regionally specific configurations to intercept incoming signals from axons in the neighborhood.  
Part three of differentiation is synaptogenesis when axon terminal branches establish contacts 
with dendrites in specialized structures called synapses.  The fine circuitry of the nervous system 
develops and is modified as synaptic connections form and disappear during brain activity.  The 
fourth step in differentiation is myelogenesis.  Specialized glial cells encase long axons of the 
afferent, efferent, associational, and commissural fiber tracts of the CNS circuitry.  Myelination 
is a particularly important step in turning the maturing sensory, integrative and motor networks 
of the CNS in general and of the neocortex in particular into a functional system by regulating 
the speed of afferent and efferent impulse transmission, timely access to storage sites, and the 
synchronization of feed-forward and feedback information processing.

SOURCES OF THE ILLUSTRATED SPECIMENS 

The illustrations of human brain specimens used in this book, tracking the sequence of embryonic, 
fetal and early postnatal neocortical development. were drawn from multiple sources.  The oldest 
illustrations are from Paul Flechsig’s work on the myelination of the human cerebral cortex, as 
summarized by Ariëns Kappers et al. (1936).  Flechsig began to publish his pioneering papers on 
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“myeloarchitectonics” of the cerebral cortex in the 1870s, using the newly invented technique 
of staining the myelin sheath of nerve fibers.  He presented evidence for the sequential postnatal 
myelination of the “projection areas” and “association areas” of the cerebral cortex, and sought 
to correlate that in his Gehirn und Seele (Flechsig, 1896) with the mental maturation of children.  
Another old source was Gustaf Retzius’ photographic reproduction of his large collection of the 
prenatally developing human brain in his Das Menschenhirn (Retzius, 1896).  Next in line was the 
work of Cecilie Vogt and Oscar Vogt who published their findings of the myelination of the human 
cerebral cortex during the first four months of postnatal life in two volumes of their Beiträge zur 
Hirnfasernlehre (Vogt and Vogt, 1902, 1904).  A more recent source of published illustrations 
has been Leroy Conel’s 8 volumes of The Postnatal Development of the Human Cerebral Cortex 
(Conel, 1939-1967).  The work contains a wealth of information about the cytology of the 
developing neocortex, using a variety of staining techniques, from birth to six years of age.  But 
the bulk of the illustrations presented in this book are from our archive of photomicrographs that 
we collected a few decades ago of cell-, fiber- and myelin-stained embryonic, fetal and early 
postnatal brain specimens stored at the National Museum of Health and Medicine in the United 
States.  We examined hundreds of specimens in the earlier Minot and Carnegie Collections, and 
the more recent Yakovlev Collection.  Our archive contains more than 10,000 photomicrographs, 
a portion of which has been digitized and some published (Altman and Bayer, 2001; Bayer and 
Altman, 2002-2008).  The selection of specimens presented in this book to illustrate neocortical 
development at different gestational ages was not a random one.  We could not use the specimens 
that have deteriorated over the decades, those that were not accurately cut in the coronal, sagittal 
or horizontal planes, and those that have appeared to us to be pathological.  

The large Carnegie Collection (designated here by the C prefix) originated in the Department of 
Embryology of the Carnegie Institution of Washington.  They were prepared under the stewardship 
of Franklin P. Mall (1862-1917), George L. Streeter (1873-1948), and George W. Corner (1889-
1981).  The human embryos were collected over a span of 40 to 50 years and were histologically 
prepared with a variety of fixatives, embedding media, cutting planes, section thickness, and 
histological stains.  Descriptions and analyses of that material, much of that dealing with other 
facets of embryonic development than that of the brain, were published in issues of Contributions 
to Embryology, Carnegie Institution of Washington, in the early 1900s.  Detailed analyses of brain 
development, mostly of first trimester embryos of the Carnegie Collection, were carried out and 
published by O’Rahilly and Müller (1987, 1994).  We also made use of the Minot Collection in 
illustrating neocortical development during the first trimester (designated here by the prefix M).  
Charles S. Minot (1852-1914), an embryologist at Harvard University, collected and meticulously 
prepared about 100 human embryos.   The sections were cut at 10 μm and stained with aluminum 
cochineal.  Most of the brains of the second and third trimester fetuses, and those of neonates, infants 
and young children that we present in this book come from the Yakovlev Collection (designated by 
the prefix Y).  Over a period of about 40 years, Paul I. Yakovlev (1894-1983) collected about 1500 
normal and pathological brains, ranging in age from the early second trimester period through old 
age (Haleem, 1990).  All of the specimens were fixed in formalin, embedded in celloidin, cut in 
36 μm thickness, and stained with various techniques to visualize cell bodies, fibrous processes 
and myelin. 
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DATING GESTATIONAL AGES 

Most of the brain sections we illustrate here were accompanied by some information about their 
origin, such as the crown-rump length (CR) and estimated gestational age of the embryos and 
fetuses.  However, in some cases gestational age was not available or was uncertainly indicated 
in days, weeks or months.  In order to more reliably date gestational age, we opted to rely on 
the most straightforward measure provided, the CR of the specimens, and indicated their age in 
gestational week (GW) on the basis of the large data base that has currently become available with 
the intrauterine ultrasonic scanning technique (Fig. 1).  There is apparently a close relationship 
between CR and GW during the first trimester (Fig. 2).  Of significance in this context, is also the 
regular relationship between estimated GW and measures of head circumference (Fig. 3). 

PRENATAL ULTRASONIC
MEASUREMENTS

Fig. 1.  A. Ultrasonic visualization of early intrauterine 
embryonic development.  B. Method of determining 
head and body length, known as crown-rump (CR) 
length.   C.  Measurement of head circumference, 
occipito-frontal diameter, and biparietal diameter  After 
Lougha et al. (2009).
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Fig. 2.  The relationship between the intrauerine CR of first trimester human embryos and 
their estimated gestational ages in weeks (GW).  Based on data by Lougha et al. (2009).

Fig. 3.  The relationship between the intrauterine growth of head circumference of human embryos 
and fetuses (means) and their estimated gestational age.  Based on data by Lougha et al. (2009).



10 Human Neocortical Development

OVERVIEW OF PRENATAL NEOCORTICAL DEVELOPMENT 

The regular growth of head circumference is paralleled by the progressive expansion of the human 
cerebral cortex between the late first trimester (GW10) and the neonatal period (GW41) as it is 
visible to the naked eye (Fig. 4).   This frequently reproduced plate by Larroche (1966) summarizes 
the highlights of the most obvious features of prenatal cortical development: its progressive growth 
during the first and second trimester (between GW10 and GW24) as a lissencephalic (smooth-
surfaced) structure (column I), and its subsequent immense expansion during the third trimester 
(between GW28 and GW41), coupled with progressive gyrification (columns II and III). 
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GW24 GW34 GW41
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GW30
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PRENATAL DEVELOPMENT OF THE HUMAN CEREBRAL CORTEX
(Lateral View)

I II III

GW-Gestation week
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Part I

ILLUSTRATIONS WITH COMMENTS 

A.  NEOCORTICAL DEVELOPMENT DURING THE FIRST TRIMESTER

Prospectus.  Based on the data summarized by Lougha et al. (2009), we used the following 
measurements to estimate the gestational age of first trimester embryos in weeks (Table 1).  (We 
present the less consistent relationship between CR length and the age of second and third trimester 
fetuses in weeks or months in Table 2 in Part 2.) 

CR (mm) GW (weeks)

3-4

5-9

10-15

16-22

23-31

32-41

42-53

54-66

67-80

5

6

7

8

9

10

11

12

13

TABLE 1
FIRST TRIMESTER CROWN RUMP LENGTH (CR)

AND ESTIMATED GESTATIONAL AGE (GW)

Fig. 4.  Overview of the prenatal growth of the human cerebral cortex.  The gestational ages in weeks are 
uncorrected, as given by the author.  The photographs were taken at the same magnification and are illustrated at 
about half the normal size.  After Larroche (1966).
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In the photomicrographs that we present in Figs. 5 to 17, we will illustrate with detailed comments 
the morphogenetic development of the neocortex during the first trimester from GW5 to GW12 as 
revealed by the histological evidence.  We begin with a GW5 (CR 4.0 mm) embryo, which as yet has 
an undivided (unicameral) telencephalon, composed entirely of its neuroepithelial (NEP) rudiment 
(Fig. 5).  That undivided NEP—considered by some authors, together with the diencephalon, to be 
the prosencephalon—is situated anterior to the bilateral optic vesicle (Fig. 5), which is a transient 
component of the diencephalon and will give rise to the retina and the supporting elements of the 
optic tract.  At this gestational age, the unicameral NEP is surrounded anteriorly by the bilateral 
olfactory placode, and the optic vesicles by the bilateral optic placode.  The relatively small size of 
the primordial telencephalon is evident in the computer reconstruction of the entire CNS in another 
GW5 embryo, shown in three views.  The undivided primordial telencephalon expands somewhat 
by the next week, as seen in a GW6 (CR 7.1 mm) embryo (Fig. 6). The olfactory placodes are 
becoming transformed into the bilateral olfactory epithelium; the optic placodes are forming the 
lens of the two eyes, and the optic vesicles are forming into the retina.  The bicameral telencephalic 
NEP forms during the 7th week postconception, as seen in a CR 15 mm embryo (Fig. 7).  By this 
age the separation of the dorsal neocortical NEP and the ventral basal ganglionic NEP is becoming 
evident, and a parenchyma composed of differentiating neurons begins to surround the latter but 
not the former.  The neocortical NEP expands during the next week, as seen in the GW8 (CR 17.5 
mm) embryo (Fig. 8).  But unlike the basal ganglionic NEP, which is surrounded by an expanding 
neuronal parenchyma by this age, the neocortical NEP is only surrounded by a thin white band 
containing the earliest differentiating neurons.  Differentiating neurons leave the neocortical NEP 
in larger numbers early during the 9th week postconception, as seen in a GW9 (CR 25 mm) 
embryo, and begin to form a thin cortical plate, the rudiment of the future gray matter in the future 
paracentral area dorsolaterally (Fig. 9).  That development is associated with the formation of the 
choroid plexus in the expanded lateral ventricles.  The cortical plate has expanded anteriorly and 
posteriorly in an older (CR 31 mm) GW9 embryo  (Fig. 10).  The developing stratified transitional 
field (STF) in the developing neocortex of the latter is shown at higher magnification in Fig. 11, 
together with the expanded choroid plexus.  

A landmark development in a young (CR 32 mm) GW10 embryo is the penetration of ascending 
thalamic fibers through the diencephalic-telencephalic boundary into the neocortex.  Descending 
corticospinal fibers form the internal capsule and pass through the basal ganglia  (Fig. 12).  The 
reconstructed model of an older (CR 38mm) GW10 embryo, and a sagittal section of a 40 mm 
embryo show the extent to which the neocortex has expanded posteriorly, covering the thalamus 
(Fig. 13B).  A horizontal section of a young GW11 embryo (CR 42 mm) shows the descending 
corticospinal fibers reaching the level of the subthalamus (Fig. 13D).  Another significant 
development by this age is the ballooning of the primitive choroid plexus in the expanding lateral 
ventricles.  That development is associated with two extraneural processes, the hypertrophy of the 
meninges and the onset of vascularization of the neocortex (Fig. 14).  The descent of corticofugal 
fibers has continued in a GW 12 (CR 60 mm) embryo (Fig. 15).  A series of horizontal cut combined 
cell- and fiber-stained sections of another GW12 (CR 57 mm) embryo provides an overview of 
many of the developments that have taken place by the end of the first trimester (Fig. 16).  Much 
of the expanding neocortex is encased in a hypertrophied meninges; the expanded choroid plexus 
fills much of the lateral ventricles; a large complement of corticofugal fibers traverse the basal 
ganglia; and the thalamocortical, somatosensory radiation can be seen penetrating the neocortex 
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and the visual radiation can be seen of making its turn in what is known as Meyer’s loop.  We end 
this survey of neocortical development with a series of high magnificaton microphotographs of 
the transformations of the neocortical NEP and the formation of the cortical gray matter during 
the first trimester (Fig. 17).  The stockbuilding NEP with its proliferative precursor neural cells 
is expanding during this period as differentiating neurons leave it to sojourn in the stratified 
transitional field (STF) or migrate toward and settle in the expanding cortical gray.

ANNOTATED ILLUSTRATIONS OF EMBRYONIC 
BRAINS

SUBJECT PAGE(S)
Figure 5: The GW5 Embryonic Brain 14-15

Figure 6: The GW6 Embryonic Brain 16-17 

Figure 7: The GW7 Embryonic Brain 18-19

Figure 8: The GW8 Embryonic Brain 20-21

Figure 9: Coronal Sections of an Early GW9 Embryo 22-23

Figure 10:The GW9 Embryonic Brain 24

Figure 11: The GW9 Embryonic Cerebral Cortex 25

Figure 12: Fibers Between the Thalamus and Cortex on GW10 26-27

Figure 13: The Late GW10/Early GW11 Embryonic Brain 28-29

Figure 14: Vascularization of the Developing Cortex 30-31

Figure 15: The GW12 Embryonic Brain 32

Figure 16: Fibers Staining During the Late First Trimester (GW12) 33-39

Figure 17: The Dorsal Cortical Neuroepithelium and the Fomation
                    of the Cortical Gray (GW6-10)

40-41
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THE GW5 EMBRYONIC BRAIN (Part 1)

Fig. 5 (facing pages).  3D computer 
reconstruction of the brain of a CR 
4.0 mm, GW5 embryo (C836), shown 
in lateral (A), dorsal (B) and ventral 
(C) views.  The small, undivided 
(unicameral) telencephalon is colored 
pink.   D. Photomicrograph of the 
brain of a CR 3.5 mm embryo of 
about the same age (C7724) cut 
in the sagittal plane.  E and F are, 
respectively, coronal sections of the 
C836 brain cut through the primordial 
telencephalon anteriorly and the 
diencephalon more posteriorly.  At 
this stage of development the small 
primordial telencephalon consists 
exclusively of a neuroepithelium 
composed of proliferating neural 
precursor cells.  There is as yet 
no parenchyma composed of 
differentiating neurons present 
outside the NEP.  The olfactory 
placodes surrounding the primordial 
telencephalon and the optic placodes 
surrounding the diencephalic optic 
recess have yet to give rise to the 
peripheral tissues that will form the 
bilateral nostrils and the bilateral eyes.



15First Trimester

0.5 mm

DIENCEPHALON

E’

E

F’

F

UNDIVIDED
TELENCEPHALON

Undivided
telencephalic

ventricle
Third

ventricle

Hypothalamus

HypothalamusHypothalamus

MedullaMedulla

PonsPons

TectumTectum

PretectumPretectum

Thalamus

ThalamusThalamus

DIENCEPHALON

MESENCEPHALON

Rhombomeres

Pituitary
(Rathke’s pouch)

Pituitary (Rathke’s pouch)

RH
O

M
BEN

CEPH
A

LO
N

Optic
vesicle

Optic placode

Optic
recess

Olfactory
placode

THE GW5 EMBRYONIC BRAIN (Part 2)

D

E F
Proliferative neuroepithelium

Proliferative
neuroepithelium

Di�erentiating
neurons



16 Human Neocortical Development

THE GW6 EMBRYONIC BRAIN (Part 1)
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Fig. 6 (facing pages).  3D 
reconstruction of the brain of a CR 8.0 
mm, GW6 embryo (C8314), shown in 
lateral (A), dorsal (B) and ventral (C) 
views.  D. Photomicrograph of the 
brain of a CR 7.1 mm, GW6 embryo 
(C8966) in the sagittal plane.  E and F 
are, respectively, coronal sections cut 
through the oval-shaped unicameral 
telencephalon of C8314 anteriorly 
and the diencephalon posteriorly.  The 
embryonic brain still consists only of 
a proliferative NEP.  Note the onset 
of transformation of the olfactory 
placode into the olfactory epithelium 
(E), and of the lens placode (F) 
becoming surrounded by the NEP of 
the optic recess, split  into the thin 
outer pigment epithelium and the 
thick internal retina (F).  Among other 
developments, is the formation of the 
pia surrounded peripherally by blood 
vessels.
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Fig. 7 (facing pages).  3D 
reconstruction of the brain of 
a CR 10.0 mm, GW7 embryo 
(M1000), shown in lateral (A), 
dorsal (B) and ventral (C) views.  
The ofactory bulb and the eye are 
beginning to form.   
D. Photomicrograph of a 
CR 15.0 mm embryo (late GW7, 
C9247) cut in the sagittal plane.  
E and F are, respectively, coronal 
sections of the M2051 (late GW7, 
CR 15.0 mm) brain cut through 
the now paired (bicameral) 
telencephalon.  Note the relative 
uniformity of the densely cell-
packed NEP stretching from the 
future frontal pole anteriorly 
to the future occipital pole 
posteriorly.  Differing from the 
basal telencephalon, which is 
surrounded by a parenchyma of 
differentiating neurons, there are 
only a few differentiating cells 
leaving the neocortical NEP.
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THE GW8 EMBRYONIC BRAIN (1)
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Fig. 8 (facing pages).  3D reconstruction of the brain of a CR 17.5 mm, GW8 embryo (M2155), shown in 
lateral (A), dorsal (B), ventral (C), and two angled anterior (D) and posterior (E) views. The expansion of the 
neocortex and basal telencephalon are evident.  Photomicrograph of a CR 21.0 mm GW8 embryo (C6202) cut in 
the sagittal plane (F). The expanding neocortical NEP, which now caps the thalamus, has assumed an oval shape, 
with an olfactory evagination forming anteriorly.  Coronal sections of the M2155 forebrain from anterior (G) to 
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posterior (H).  The dorsally positioned formative neocortex (the alar plate) is still devoid of differentiating neurons 
but neurons have left the ventral part of the telencephalic NEP (the basal plate) in appreciable numbers to form the 
expanding basal ganglia.  A vascular bed medially beneath the developing hippocampus marks the site where the 
choroid plexus is beginning to invaginate into the  the ventricles (H).
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CORONAL SECTIONS OF AN EARLY GW9 EMBRYO (Part 1)
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Fig. 9.  Coronal sections of the forebrain of M2042 (CR 25 mm, GW9) from anterior (A) to posterior (D), showing 
the emergence of a new structure in the neocortex, the cortical plate, the future gray matter. The cortical plate, 
composed of postmitotic (differentiating) neurons, is still absent anteriorly in the presumptive frontal cortex (A) 
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CORONAL SECTIONS OF AN EARLY GW9 EMBRYO (Part 2)
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but begins to form ventrolaterally in the mid-anterior posterior extent of the neocortex (B, C).  The cortical plate 
is absent more caudally, at the level of the thalamus and the hypothalamus (D).  Note the continuing uniformity of 
the lateral neocortical NEP, in contrast to the heterogeneity of the NEP in the medial limbic telencephalon and the 
diencephalon.  In association with the formation of the cortical plate, the choroid plexus has begun to “bloom” in C.
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Fig. 10.  A. Model of the brain of an older, CR19.4 mm GW9 embryo (HA3, reproduced from Hochstetter, 
1919, Fig. 37, Table VI).  Note the formative olfactory bulb and optic nerve and the great expansion of the 
neocortical hemisphere.  The other illustrations are photomicrographs of horizontal sections of the brain of still 
older, CR 31 mm GW9, embryo (C9226) from anterior to posterior.  The cortical plate has spread anteriorly into 
the future frontal lobe (B) and the primitive choroid plexus fills much of the lateral ventricles at the level of the 
anterior thalamus (C), and has spread into the posterior neocortex (D).   New developments are the presence 
of descending corticofugal fibers passing trough the basal ganglia and indications of ascending thalamocortical 
fibers penetrating the neocortex (arrows, C).  
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Fig. 11.  Higher magnification detail showing the organization of the neocortex in C9226, the GW9 embryo 
pictured in Fig. 10.  Note the uniformity of neuroepithelial thickness from lateral to medial.  In contrast, the two-
layered (cellular and fibrous) stratified transitional field (STF) has decreasing widths from lateral to dorsal.  The 
STF is absent outside the medial limbic neuroepithelium, but definite cellular and fibrous layers are outside the 
hippocampal neuroepithelium.  The expanding embryonic choroid plexus is surrounded by a double membrane 
and its spongy interior is filled with capillaries.
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Fig. 12.  A. The horizontally-sectioned thalamus of a young GW 10 (C609, CR 32 mm) fetus illustrating many 
fibers apparently radiating laterally from the thalamic transitional field toward the developing neocortex (red 
arrows).  B.  In a more ventral horizontal section the fiber-rich formative internal capsule seems to contain 
ascending thalamocorical (corticopetal) fascicles that emanate from the thalamus (red arrow) and descending 
corticospinal (corticofugal) fibers that originate in the cerebral cortex (purple arrows).
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THE LATE GW10/EARLY GW11 EMBRYONIC BRAIN (Part 1)
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Fig. 13A. A Model 
of the brain of 
an older GW10 
embryo (CR 38 mm, 
Fig.43, Table VII, 
Hochstetter, 1919).  
Note the ventral 
invagination of the 
greatly enlarged 
cerebral cortex 
at this stage of 
development.  This 
is the beginning of 
the separation of the 
frontal and parietal 
lobes from the 
temporal lobe.  The 
cerebral hemisphere 
changes from an 
ovoid to a croissant 
shape, with the 
formative insula 
buried in its depth.

Fig. 13B. A sagittal section 
of a CR 40 mm, GW10 
embryo (C6658).  Note the the 
expansion of the choroid plexus 
and the presumptive ascending 
thalamocortical (red arrow) and 
descending corticospinal fibers 
(purple arrow).  
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THE LATE GW10/EARLY GW11 EMBRYONIC BRAIN (Part 2)
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Fig. 13C. A dorsal 
horizontal section from a 
slightly older CR 42 mm 
GW10 embryo (M841), 
showing thalamocortical 
fascicles (red arrows) 
penetrating the fibrous 
(white) band of the early 
stratified transitional field.

Fig 13D.  A ventral section 
from the same specimen in 
C, showing presumptive 
descending corticofugal 
fascicles reaching the level 
of the subthalamus.  The 
thickening of the cortical 
plate and the ballooning 
of the choroid plexus are 
evident in C and D.  Note 
the thickness differences 
in the lateral vs. medial 
cortical plate.  
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VASCULARIZATION OF THE DEVELOPING CORTEX
(Part 1)      
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Fig. 14 (facing pages).  The vascularization of the neocortex between GW9 and GW11 is illustrated by comparing 
two sets of coronal sections through the heads of a CR 25 mm embryo (A, C, M2042) and a CR 42 mm embryo (B, 
D, M841). A. In the younger embryo, there is only a trace of the cortical plate and no blood vessels surrounding the 
cortex.  B. In the older embryo, there is an expanding cortical plate, and many blood vessels (presumably branches 
of the anterior cerebral artery) pass from the midline to the lateral surface of the cortex (orange).  C and D.  The 
same pattern of vasculalization, with a gradient from posterior to anterior, is evident at more posterior coronal levels.  
Two other notable differences are visible between the younger and older brains.  One is the  enlargement of the 
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VASCULARIZATION OF THE DEVELOPING CORTEX
(Part 2)
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spongy choroid plexus in the older embryo; the other is the great expansion of the similarly spongy arachnoid space.  
Apparently, cortical plate formation is supported not only by growing vascularization but the formation of two 
transient trophic structures, the large embryonic choroid plexus and the large embryonic superarachnoid reticulum.
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THE GW12 EMBRYONIC BRAIN
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Fig. 15.  Coronal sections of the brain of a CR 60 mm, GW12 embryo (Y1-59) at an anterior level cut across 
the basal ganglia and presumptive motor cortex (A), and more posteriorly at the presumptive sensory cortex 
and thalamus (B).  The illustrations indicate presumptive continuity of the undifferentiated fibrous layer below 
the cortical plate with the corticospinal tract (purple arrows) and with the ascending thalamocortical fibers (red 
arrow).  This is the first hint that cortical connections are being established by the end of the first trimester.  

Fig. 16.  
The following 7 pages 
show horizontally cut, 
combined cell- and fiber-
stained sections of the 
brain of a CR 56.5 mm, 
GW12 embryo (C1500) 
at 7 levels from dorsal 
(A) to ventral (H).  The 
tissues surrounding the 
brain—presumptive skin 
and bone, and components 
of the meningeal brain 
coverings—have been 
preserved and  illustrate 
an important facet of 
embryonic cortical 
development, the presence 
of a superarachnoid 
reticulum.  
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16 A: FIBERS STAINING DURING
THE LATE FIRST TRIMESTER
(GW12)
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A. In this dorsal horizontal sec-
tion, three fluid-filled meningeal 
components can be distinguished 
in the middle portion of the 
neocortex: (1) the thin innermost 
pial matrix (red); (2) two 
intermediate hypertrophied arachnoid matrices (blue, the superarachnoid); and (3) the outer dural matrix (green), 
which contains blood vessels that are assumed to be associated with the developing neocortical arterial and venous 
vasculature.  The dural meninx is encased in the primordia of bone and skin.  



34 Human Neocortical Development

16 B: FIBERS STAINING DURING
THE LATE FIRST TRIMESTER
(GW12)
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B. Perusal of the this section suggests that presumed fluid pressure exerted by the hypertrophied arachnoid meninx 
leads to middle constriction of the neocortex (insula) and its separation into an anterior (frontal) and a posterior 
(temporal/occipital) component.



35First Trimester

16 C: FIBERS STAINING DURING
THE LATE FIRST TRIMESTER
(GW12)
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C.  The separation is more pronounced in this horizontal section where constriction of the neocortex at the insula is 
accompanied by the inward expansion of the basal ganglia and the hippocampus.  



36 Human Neocortical Development

Occipital/temporal
neocortex

Occipital/temporal
neocortex

16 D: FIBERS STAINING DURING
THE LATE FIRST TRIMESTER
(GW12)
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D. The continued 
expansion of the 
basal ganglia and 
thalamus and the more 
pronounced insular 
invagination contribute 
to a greater separation 
of the frontal and temporal/
occipital cortical lobes.  The anterior 
and posterior lateral ventricles are narrowly 
continuous in a channel between the thalamus and the basal ganglia.  Darkly-staining anterior corticofugal fiber 
bundles (purple arrow) from the neocortex are traversing the basal ganglia at this level.  
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16 E: FIBERS STAINING DURING
THE LATE FIRST TRIMESTER
(GW12)
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16 E: FIBERS STAINING DURING
THE LATE FIRST TRIMESTER
(GW12)
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E. At this more  
ventral level, 
the frontal and 
temporal lobes of 
the neocortex are 
further separated by 
the complete division 
of the lateral ventricle  
into anterior and posterior 
parts.  The lateral and third 
ventricles still communicate 
through the foramen of Munro.  Fiber 
bundles of the thalamocortical radiation pass 
from the diencephalon into the neocortex; those directed 
rostrally (upward red arrow) are the presumptive somatosensory radiation; 
those the turning caudally form the presumptive visual radiation (Meyer’s loop, downward red arrow).  
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16 F: FIBERS STAINING DURING
THE LATE FIRST TRIMESTER
(GW12)

Temporal
neocortex
Temporal
neocortex

16 F: FIBERS STAINING DURING
THE LATE FIRST TRIMESTER
(GW12)

Anterior sagittal sinusAnterior sagittal sinus

Meningeal
hypertrophy

Orbitofrontal
cortex

Orbitofrontal
cortex

Medial
limbic
cortex

Medial
limbic
cortex

Lateral
limbic
cortex

Lateral
limbic
cortex

Lateral
limbic
cortex

Lateral
limbic
cortex

Posterior
Lateral

ventricle

Anterior
Lateral

ventricle

Third ventricle
Aqueduct

SeptumSeptum

Hippo-
campus
Hippo-
campus

Pia (red)

Arachnoid
(blue)
inner
outer

Arachnoid
(blue)
inner
outer

Bone and Dura
(green)

Bone and Dura
(green)

Strati�ed
transitional
�eld

Cortical plate

Basal
ganglia

Basal
ganglia

Basal
ganglia

Basal
ganglia

Cortical
neuro-
epithlium

Anterior commissure
�bers

Anterior commissure
�bers

Interhemispheric
�ssure

Interhemispheric
�ssure

Midbrain
tegmentum

Midbrain
tegmentum

Midbrain
tectum

Midbrain
tectum

ThalamusThalamus

Hypo-’
thalamus

Hypo-’
thalamus

Bone
enlargement
Bone
enlargement

Centrencephalic
constriction
Centrencephalic
constriction

Skin
(epidermis

and dermis)

Posterior sagittal sinusPosterior sagittal sinus

Dural
vasculature
Dural
vasculature

F. This section 
is just below 
the embryonic 
lateral fissure.  The 
continuity between the 
anterior and posterior 
cortices is completely 
severed.  Meningeal 
hypertrophy is pronounced at 
the centrencephalic constriction 
where the primordial bone is 
enlarging and the anterior commissure 
crosses the midline.  Fiber bundles (red 
arrows) extend toward the cortex.
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16 G: FIBERS STAINING DURING
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G. Meningeal hypertrophy, 
mainly of the superarachnoid 
reticulum (blue) is most 
pronounced at this level.  There is 
ample room for further brain growth 
within the primordial skull, and the copious 
fluids in the arachnoid may contain trophic 
factors to enhance brain growth.     
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THE DORSAL CORTICAL NEUROEPITHELIUM
AND THE FORMATION OF THE CORTICAL GRAY

(Sagittal Slices, Part 1)
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Fig. 17 (facing pages).  High magnification photomicrographs of the developing dorsal neocortex in sagittally-cut 
first trimester embryos.  A. In the CR 9.6 mm GW6 embryo (C6516), the proliferating neuroepithelial (NEP) cells 
have their nuclei undergoing mitosis at the lumen of the lateral ventricle, increasing their numbers (stockbuilding).  
The few migrating cells, presumably Cajal-Retzius, enter the thin fibrous primordial plexiform layer. As yet, there is 
no distinct pial covering.  B.  In this CR 11.7 mm GW7 cortex (C8789), the primordial plexiform layer has become 
wider and contains densely packed round extracellular vesicles that may be a conduit for ingrowing fibers.  The cells 
in the plexiform layer may be the earliest differentiating Cajal-Retzius neurons settling superficially, while subplate 
neurons are migrating from the NEP.  The pia, with its many blood islands, has formed.   C.  In the CR 15.0 mm 
GW8 cortex (C6202), there are more neurons settling and migrating into the expanding primordial plexiform layer.  
D.  Several new developments are evident in the neocortex of the CR 28.8 mm GW9 embryo (M1598).  (i) The 
most obvious is the formation of the thin, compact band of cells, the cortical plate, containing the earliest settling 
neurons of the future laminated cortical gray matter. (ii) The cortical plate is sandwiched between the superficial 
fibrous layer 1, containing aligned Cajal-Retzius cells, and a deep fibrous layer. The neurons settling neurons in the 
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THE DORSAL CORTICAL NEUROEPITHELIUM 
AND THE FORMATION OF THE CORTICAL GRAY

(Sagittal Slices, Part 2)
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cortical plate may be subplate neurons, the future layer 7.  (iii) A widening band of cells flanking the expanding NEP 
contains migrating and sojourning neurons (mainly layer 6).  E. The progressive thickening of the cortical plate, the 
stratified transitional field, and the NEP (still in stockbuilding phase) continues in the neocortex of the CR40 mm 
GW10 embryo (C6658).  The ragged base of the cortical plate contains delaminating subplate neurons.
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B.  NEOCORTICAL DEVELOPMENT DURING THE SECOND AND THIRD 
TRIMESTERS 

The second trimester specimens we illustrate in this chapter are mostly from the Yakovlev 
Collection.  Information is available in most instances about the estimated age and size of the 
fetuses but in a few cases we have corrected the dates on the basis of the large data file presented 
by Lougha et al. (2009), based on in vivo ultrasound imaging about the relationship between the 
crown-lump length of fetuses (CR), and their estimated gestational age in weeks (GW) or months 
(Table 2).

The neocortex is undergoing major developmental changes during the second trimester, which is 
often considered the beginning of the early fetal period.  As seen in a photograph of a 4 months-
old fetus (Fig. 18A-D), the cerebral cortex is lissencephalic, lacking in convolutions, with the 
exception of a deep ventrolateral invagination at the mid antero-posterior level where the branches 
of the internal carotid arteries (anterior cerebral and middle cerebral) fan out and are distributed 
over the surface of the cerebral hemispheres (Fig. 18E).  We call this invagination, the insular 
cleavage.  This cleavage, originally a dimple, separates the frontal lobe from the temporal lobe and 
is the base of the formative lateral fissure.

CR (mm) GW (weeks) Months

100-145

150-190

195-230

14-17 4

18-21 5

22-24 6

TABLE 2
SECOND TRIMESTER CROWN RUMP LENGTH (CR)

AND ESTIMATED GESTATIONAL AGE (GW)

Fig. 18.  The brain of a 4 months-old fetus in lateral (A), dorsal (B) and ventral views (C), and the brain of another 
fetus (D) of the same age in midline view.  E. The same brain in A, after its vascular system was injected with ink.  
This lateral view shows the partitioning of the frontal lobe from the temporal lobe ventrally by the wide-based 
insular cleavage (the incipient lateral fissure).  That primordial partitioning of the cerebral cortex serves as the 
passageway for the distribution of cerebral arteries from the internal carotid artery into the developing cerebral 
cortex (E). (After Retzius, 1896. Color and labeling added). 
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Figures 19 through 37 (see list on facing page) show neocortical development in second and third 
trimester fetal brains.  The following text is an abstract of the major changes.

A comparison of photomicrographs of the brain of a second trimester (GW14) and an early third 
trimester (GW18) fetus (Fig. 19) indicates that a major event during this period is the expansion 
of the stratified transitional field (STF), with pronounced regional differences in the lamination 
pattern from the frontal cortex rostrally to the occipital cortex caudally.  The corticofugal tract 
traversing the basal ganglia expands during this period but as yet few of these descending fibers 
have reached the pontine gray in the younger fetus (Fig. 19E) but many more so in the older fetus 
(Fig. 19F).  It is also during this period that the corpus callosum is in the process of crossing to the 
opposite side.  Regional differences in STF lamination are becoming more pronounced during the 
5th month of fetal life, as seen in a GW20 fetus (Fig. 20).  This important morphogenetic event 
is associated with a large complement of corticofugal fibers that leave the anterior neocortex and 
another large complement of thalamocortical fibers that penetrate the paracentral and posterior 
neocortex.  A remarkable feature in the latter region is the STF honeycomb matrix, which is 
most pronounced in the occipital lobe (Figs. 20, 21, 22).  We postulate that the STF honeycomb 
matrix is the site where fascicles of thalamocortical sensory relay fibers specify cortical neurons 
migrating and sojourning there.  It is postulated that the thalamocortical fibers carry markers of 
their topographic (retinotopic, somatotopic and cochleotopic) origin and transmit that information 
to the unspecified ascending differentiating neurons in STF layer 3 before these neurons resume 
their migration to the cortical plate (Fig. 23).

Cortical gyrification begins at about the 5th month of fetal life, as the parieto-occipital and calcarine 
fissures are beginning to form posteriorly in the occipital lobe (Fig. 20).  But gyrification in the 
lateral convexity does not start until the 6th month of fetal life  (Figs. 24 to 28) and does not become 
pronounced until the 7th month in early third trimester fetuses (Figs. 29 to 30).  The deepening 
fissures come to separate different components of the neocortex: the lateral fissure separates the 
frontal lobe from the temporal lobe; the central fissure separates the motor precentral gyrus from 
the somatosensory postcentral gyrus (paracentral area); the occipito-parietal fissure separates the 
visual cortex from the haptic (touch sense) parietal cortex; and the calcarine fissure separates 
the dorsal visual cortex from the ventral visual cortex.  It is during the middle and late third 
trimester that the frontal lobe, temporal lobe, parietal lobe and occipital lobe gradually undergo 
secondary and tertiary foliation (Fig. 31).  That increased cortical gyrification is associated with 
three developments: (i) the gradual dissolution of the STF (Fig. 30); (ii) a great increase in white 
matter volume (a sign of increased axonogenesis, Fig. 31); (iii) the expansion of the cortical plate 
as it differentiates into regionally distinctive gray matter. 

There is little difference in the thickness and cellular organization of the cortical plate in the 
presumptive motor cortex and visual cortex in the GW18 fetus (Fig. 32).  A pronounced difference 
emerges in the thickness of the motor cortex and the visual cortex in the GW20 fetus (Fig. 33).  The 
relationship between the dissolution of the STF, the increasing depth of the white matter, and the 
incipient lamination of the gray matter is illustrated in a comparison of the neocortical organization 
at different levels in a GW21 fetus and a GW26 fetus (Fig. 34). We illustrate the development of 
regional differences in the cytoarchitectonics of the cortical gray matter at higher magnification at 
5 months, 7 months and at birth in Figs. 35-37.
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Fig. 19. On the following 6 pages.  Coronal sections of the brain from anterior to posterior of a 4 months-old 
fetus (Y144-63, GW14, CR 100 mm) and an early 5 months-old fetus (Y15-63, GW 19, CR 150 mm).  A series 
of developmental changes are visible in the cerebral cortex at these two ages and in comparison with late first 
trimester fetuses shown earlier (Figs. 15-17).  Among these changes are some of the following.  The cortical plate 
is progressively widening during this period, indicating ongoing neuronal migration and settling.  However, that 
migration is an interrupted process as large populations of sojourning neurons form alternating cellular layers with 
fibrous bands in the transient neocortical stratified transitional field (STF).  These distinctive layers in different 
cortical areas are shown in insets at higher magnification.
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THE BRAINS OF FOUR AND
EARLY FIVE MONTH FETUSES
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Fig. 19A and B (facing pages). In the anterior cortex of 
the GW14 fetus (A) there is a thin fibrous band abutting 
the neuroepithelium, designated as STF6.  This band is 
traceable medially to the small corpus callosum (inside 
red arrow).  The fibrous STF6 is wider in this GW18 fetus 
(B) and so is the corpus callosum.  The same applies to the 
cellular STF5, which is thin on GW14 and much broader 
on GW18.  Sojourning neurons of STF5 may be the source 
of both the crossing callosal axons and the descending 
corticospinal fibers that, beginning in the fibrous STF4, 
form discrete fascicles as they transit through the basal 
ganglia (outside red arrow).  
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THE BRAINS OF FOUR AND
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Fig. 19C and D (facing pages).  STF6 and the corpus callosum are 
recognizable on GW14 (C) but the fibers of the latter have not yet 
crossed to the opposite side.  By GW18 (D), STF6 is much broader 
and some of the callosal fibers are crossed (inside red arrows).  
Thalamocortical fibers may be seen penetrating the fibrous STF4 at 
both ages (purple arrows).  Apparently, corticospinal efferents and 
thalamocortical afferents intermingle in STF4.  There is no evidence 
of a cellular STF3 in these anterior sections.  
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THE BRAINS OF FOUR AND
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E GW14

Strati�ed transitional �eld layers
2/13456

N
eu

ro
-

ep
ith

el
iu

m

Subplate

1 mm

Cortical plate
Layer 1

Inter-
hemispheric

�ssure

Calcarine
�ssure

See below

Lateral ventricle
with choroid plexus

Lateral ventricle
with choroid plexus

Neocortex
temporal

Neocortex
occipital

Neocortex
occipital MIDBRAIN

PONS

TegmentumTegmentum

Transpontine
corticospinal

tract

Pontine gray

Central
gray

Central
gray

AqueductAqueduct

Superior
colliculus
Superior
colliculus

Neocortex
parietal

Fig. 19E and F (facing pages). In these posterior sections, the fibrous 
STF6 is indistinct at GW14 (E) and is still small at GW18 (F).  While 
the cellular STF5 is still quite distinct, STF4 is less distinct than 
in more anterior sections.  What is characteristic at this level is the 
prominent trilaminar STF3, with a series of miniature orthogonally 
oriented  fiber columns sandwiched between two thin cellular 
sublayers (insets), what we have called the honeycomb matrix.  The 
honeycomb matrix also marks the developing visual cortex, which is 
beginning to be partitioned into two compartments by the thecalcarine 
fissure in both specimens.  Also noteworthy is the few descending 
transpontine corticospinal fibers passing through the pons on GW14 
and their abundance on GW18.
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Fig. 20 (facing pages). Parasagittal sections of the brain of a 5 months-old fetus (Y27-60, GW20, CR160 
mm) from medial (A) to lateral (D), showing the organization of the developing neocortex and the stratified 
transtional field (STF) from anterior to posterior in relation to the descending corticospinal tract (downward 
red arrows) and the ascending thalamocortical radiation (upward purple arrows).  There is little indication for 
systematic regional differences in the thickness or cell-packing density of the cortical plate in the different areas 
(as there is in the mature cortical gray matter).  However, there are distinct differences in the configuration of 



53Second and Third Trimesters

Corticofugal �bers
Corticopetal �bers

Internal capsule

Strati�ed transi-

tional �eld

Cortic
al plate

Lateral ventricle

w
ith choroid plexus

Motor area

Visual area

Somatosensory area

Temporal cortex

Hip
poc

am
pu

s

Subplate

ANTERIOR CORTEX Motor area
Visual area

Somatosensory area

Temporal corte
x

THE CEREBRAL CORTEX OF A 5-MONTH FETUS

C

D

Internal capsuleBasal ganglia
Striatum

O rbitofrontal cortex

Orbitofrontal corte
x

Paracentral cortex

Paracentral cortex

Parietal cortex

Parietal cortex

O
ccipital cortex

Occipital cortex

Basal ganglia
Striatum

Internal capsule

Basal ganglia

Striatum

Basal ganglia

Striatum

Internal capsule

ANTERIOR CORTEX

POSTERIOR CORTEX

Neuroepithelium
+subventricular
zone

Neuroepithelium
+subventricular
zone

Strati�ed transi-
tional �eld

Strati�ed transi-

tional �eld

Subplate
Cortical plate

Cortic
al plate

Layer 1

Lateral ventricle
with choroid plexus

Lateral ventricle

w
ith choroid plexus

Fr
on

ta
l c

or
te

x
Fr

on
ta

l c
or

te
x

Motor area

Motor area

Visual area

Visual area
Somatosensory area

Somatosensory area

Thalam
us

Globus
pallidus

Thalam
us

Globus
pallidus

Amygdala

Temporal corte
x

Temporal cortex

Hip
po

ca
m

pu
s

Hip
po

ca
m

pu
s

Hip
poc

am
pu

s

Amygdala

AmygdalaAmygdala

Fim
bria

Fim
bria

Lateral
migratory

stream
Claustrum

Subplate

the STF in the different presumptive cortical areas.  Most marked is the presence of an STF3 in the posterior 
(sensory) cortex and its absence in the anterior (motor) cortex.  There are differences in STF3 organization in 
the presumptive somatosensory and parietal cortices, and in the occipital cortex.  It is only in the visual occipital 
cortex that the radially oriented, miniature fibrous columns are sandwiched between two compact cellular layers.  
A notable feature of this brain is the deepening of the calcarine fissure (A and B) and the formation of the parieto-
occipital fissure most medially (A).  
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Fig. 21.  These higher magnification 
photomicrographs illustrate the 
differences between STF organization 
in the frontal cortex (A) and the 
occipital cortex (B) in this 5‑months-
old fetus (Y27-60, GW20, CR 160 
mm).   STF3 is absent anteriorly and is 
prominent posteriorly.  STF5 is thinner 
anteriorly, and STF1, the formative 
white matter, is less prominent in the 
frontal cortex than in the occipital 
cortex, but that difference may simply 
be due to the cutting angle of the 
sections rather than actual differences.
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LAYERS IN THE STRATIFIED TRANSITIONAL FIELD (STF)
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Fig. 22.  A comparison of the presumptive motor cortex (A) and visual cortex (B) in the preceding 5 months-old 
fetus at higher magnification.  Both areas show an indistinct layer of diffuse cells beneath the cortical plate (the 
subplate), but the thicker cortical plate in the motor cortex compared to visual cortex may be due to differences in 
cutting angles.   But most important and most pronounced are the differences in STF lamination patterns between 
the two areas.  STF1 (the formative white matter) and STF2 (the zone of migrating neurons) are much thicker in 
the motor cortex that in the visual cortex.  The trilaminar STF3, the distinctive feature of the occipital lobe and 
sensory cortex, is absent in the motor cortex.  The greater concentration of fibers in STF4 and cells STF5 in the 
visual cortex may indicate the later maturation of the visual cortex compared to motor cortex.
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HYPOTHETICAL FUNCTIONAL ORGANIZATION OF THE
STRATIFIED TRANSITIONAL FIELD (STF) IN THE VISUAL CORTEX
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Fig. 23.  A diagram of the organization and hypothetical function of STF3 in the developing visual cortex.  The 
two horizontal cell-dense bands (STF3a and STF3c) form an upper plate and a lower plate parallel to the cortical 
surface, with vertical minicolumns of cells and fibers between them (STF3b).  We postulate that the segregated 
fiber bundles from the lateral geniculate nucleus (in STF4) carry specific information, such as, location of retinal 
origin, on-center or off-center excitability, etc., and that these fibers interact with the nonspecified neurons moving 
out of STF5 into STF3.  As neurons migrate through STF3c, STF3b, STF3a, they intermingle with the thalamic 
fibers and enter STF2 as specified neurons, possibly migrating to specific regions in the cortical plate with their 
associated fibers.  



57Second and Third Trimesters

PARIETAL
LOBE

PARIETAL
LOBE

OCCIPITAL
LOBE OCCIPITAL

LOBE

FRONTAL
LOBEFRONTAL

LOBE

PARACENTRAL AREAPARACENTRALAREA

Parieto-occipital
�ssure

Calcarine
�ssure

Parieto-occipital
�ssure

Calcarine
�ssure

Co

rpus callosum Co

rpus callosum
Cingulate gyrus

Cerebellum Cerebellum

DIEN
CE

PH
AL

ON

BRAIN STEM

BRAIN STEM

TEMPORAL
LOBE

TEMPORAL
LOBE

OCCIPITAL
LOBE

OCCIPITAL
LOBE

FRONTAL
LOBE

FRONTAL
LOBE

Olfactory
bulb

Ce
re

be
llu

m

Ce
re

be
llu

m

BR
AI

N 
ST

EM

BR
AI

N 
ST

EM
PARIETAL

LOBE
PARIETAL

LOBE

OCCIPITAL
LOBE OCCIPITAL

LOBE

FRONTAL
LOBE

FRONTAL
LOBE

PARACENTRAL AREA

Parieto-occipital
�ssure

Parieto-occipital
�ssure

Interhemispheric
�ssure

Interhemispheric
�ssure

Lateral
�ssure

PARACENTRAL  AREA

FRONTAL
LOBE FRONTAL

LOBE
OCCIPITAL

LOBE

PARIETAL
LOBE

PARIETAL
LOBE

TEMPORAL
LOBE TEMPORAL

LOBE

OCCIPITAL
LOBE

PARACENTRAL AREA PARACENTRAL AREA

Insula Insula

Central
sulcus

Central
sulcus

Lateral
�ssure

Lateral
�ssure

Cerebellum Cerebellum

THE 6-MONTHS-OLD
FETAL NEOCORTEX

A

B

C

D

E

G

H

F

FRONTAL
LOBE FRONTAL

LOBE
OCCIPITAL

LOBE

PARIETAL
LOBE

PARIETAL
LOBE

PARIETAL
LOBE

PARIETAL
LOBE

PARIETAL
LOBE

PARIETAL
LOBE

TEMPORAL
LOBE

TEMPORAL
LOBE

TEMPORAL
LOBE

TEMPORAL
LOBE

TEMPORAL
LOBE

TEMPORAL
LOBE

OCCIPITAL
LOBE

OCCIPITAL
LOBE

OCCIPITAL
LOBE OCCIPITAL

LOBE

OCCIPITAL
LOBE

OCCIPITAL
LOBE

OCCIPITAL
LOBE

FRONTAL
LOBE

FRONTAL
LOBE

FRONTAL
LOBE

FRONTAL
LOBE

FRONTAL
LOBE

FRONTAL
LOBE

PARACENTRAL AREA PARACENTRAL AREA

PARACENTRAL AREA

PARACENTRAL AREAPARACENTRALAREA

Insula

Olfactory bulb Olfactory bulb

Olfactory bulb
Olfactory

bulb

Olfactory bulb
Olfactory bulb

Insula
Insula

Parieto-occipital
�ssure

Calcarine
�ssure

Parieto-occipital
�ssure

Parieto-occipital
�ssure

Parieto-occipital
�ssure

Calcarine
�ssure

Insula

Central
sulcus

Central
sulcus

Central
sulcus

Interhemispheric
�ssure

Interhemispheric
�ssure

Central
sulcus

Lateral
�ssure

Lateral
�ssure

Lateral
�ssure

Lateral
�ssure Lateral

�ssure 

Co

rpus callosum Co

rpus callosum
Cingulate gyrus

PARACENTRAL  AREA

Cerebellum

Cerebellum Cerebellum

Ce
re

be
llu

m

Ce
re

be
llu

m

Cerebellum

DIEN
CEP

HALO
N

DIEN
CE

PH
AL

ON

BRAIN STEM

BR
AI

N 
ST

EM

BRAIN STEM

BRAIN STEM

BR
AI

N 
ST

EM

BRAIN STEM

Fig. 24. The brain of a younger 
6 months-old fetus in lateral 
(A), dorsal (B), ventral (C) 
and medial (D) view (left 
column),  The brain of an older 
6 months-old fetus in lateral 
(E), dorsal (F), ventral (G) 
and medial (H) view (right 
column).  Several changes 
take place during this period 
in the developing neocortex.  
One of them is the onset of 
cortical gyrification.  The 
central sulcus, which comes 
to divide the motor and 
sensory projection areas, is 
faintly visible in the younger 
neocortex and becomes 
prominent in the older.  The 
lateral fissure that divides 
the paracentral area from the 
temporal lobe expands, and the 
same applies to the parieto-
occipital and calcarine fissures 
in the occipital lobe.  Note also 
that the cingulate gyrus is well 
formed in the older fetus (H). 
(After Retzius, 1896; color and 
labeling added).
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THE CEREBRAL CORTEX OF A 6-MONTH
FETUS (210 MM, CORONAL SLICES)

Fig. 25 (facing pages).  Coronal 
sections of the brain in a 
6‑months-old fetus (Y94-62; 
GW24, CR, 210 mm) at frontal 
(A), paracentral (B), parietal 
(C), and occipital (D) levels.  
Notable developmental changes 
(compare with Fig. 19) are the 
transformation of STF1 and 
STF2 into a thick layer of white 
matter, more fibers leaving the 
anterior cortex (outward red 
arrows in A and B), the onset 
of gyrification, the shrinkage 
of the lateral ventricles, and 
the presence of more fibers in 
the corpus callosum (inward 
red arrows, A, B, C).  C shows 
abundant fibers between the 
thalamus and cortex (purple 
arrows).  STF3 is still present 
(C, D) but is becoming less 
conspicuous.
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Fig. 26.  Sagittal sections of the brain in 
a 6‑months-old fetus (Y211-65; GW23, CR 
220 mm) from medial (A) to lateral (B).  Regional differences in STF configuration are still evident as the white 
matter (STF1) widens considerably, some gyri are beginning to form,  and the lateral ventricle shrinks (compare 
with Fig. 20).  There are indications for the separation of ascending thalamocortical fibers (upward purple arrows) 
posteriorly from the descending corticofugal fibers anteriorly (downward red arrows). 
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Fig. 27.  Two farther lateral sagittal sections from the preceding 6 months-old fetus (Y211-65) at higher 
magnification, showing visual radiation fibers (purple arrows) leaving the dorsal lateral geniculate nucleus (A) and 
terminating in STF4 and STF3 of the occipital cortex (B).  The beginning transformation of the choroid plexus can 
be seen from the early spongy type in A to the more mature chain-like configuration in B.
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NEOCORTICAL DEVELOPMENT AT 5 AND 7 MONTHS
 (HORIZONTAL SLICES)

A. 190 mm 
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Fig. 28 (On these 2 pages and the following 6 pages).  Changes in neocortical development are illustrated in a 
comparison of a series of matched horizontal brain sections, from dorsal to ventral, in a 5 months-old fetus (Y197-
65, GW23, CR 190 mm) and a young third trimester, 7 months-old fetus, (Y16-59, GW26, CR 235 mm). A and B. 
In this dorsal pair of sections slicing through the paracentral area the following developmental changes are evident:  
The STF is prominent in the younger fetus but is in the process of dissolution in the older fetus.  The depth and 
expanse of the white matter has increased in the older fetus.  The uniformly cell-dense cortical plate seen in the 
younger fetus has changed into a laminated one (superficial and central cell dense bands) in the older fetus.  Finally, 
there is a considerable increase in number and depth of the gyri in the older fetus. 
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Parietal cortex

B. 235 mm 

NEOCORTICAL DEVELOPMENT AT 5 AND 7 MONTHS
 (HORIZONTAL SLICES)
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Corticofugal �bers
Corticopetal �bers

NEOCORTICAL DEVELOPMENT AT 5 AND 7 MONTHS
 (HORIZONTAL SLICES)C. 190 mm 
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Fig. 28 C and D.  The same changes seen in A and B are evident at lower horizontal levels that transect the basal 
ganglia.  More fibers are present at this level.  Red arrows indicate cortical fibers crossing in the corpus callosum 
or entering the internal capsule.  Purple arrows are postulated thalamic fibers flowing out of the internal capsule to 
enter the anterior and posterior cortex in STF4. 
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D. 235 mm 
NEOCORTICAL DEVELOPMENT AT 5 AND 7 MONTHS

 (HORIZONTAL SLICES)
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NEOCORTICAL DEVELOPMENT AT 5 AND 7 MONTHS
 (HORIZONTAL SLICES)

E. 190 mm 
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Fig. 28 E and F.  The same changes seen in the preceding levels are evident at lower horizontal levels that transect 
the thalamus.  Colored arrows indicate the postulated trajectory of fibers to (purple) and from (red) the cortex.
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Corticofugal �bers
Corticopetal �bers

F. 235 mm 

NEOCORTICAL DEVELOPMENT AT 5 AND 7 MONTHS
 (HORIZONTAL SLICES)
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NEOCORTICAL DEVELOPMENT AT 5 AND 7 MONTHS
 (HORIZONTAL SLICES)

G. 190 mm 
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Fig. 28 G and H.  The same changes seen in the preceding levels are evident at lower horizontal levels that transect 
the midbrain.  Note that at all levels of the older specimen (B, D, F, and H), the deep white matter tends to be 
thinner in the depths of the developing fissures—an important point that we will emphasize later.
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H. 235 mm 

NEOCORTICAL DEVELOPMENT AT 5 AND 7 MONTHS
 (HORIZONTAL SLICES)
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A 390 mm

B 430 mm

C 490 mm

THE NEOCORTEX IN
THIRD TRIMESTER AND
NEONATE SPECIMENS
LATERAL VIEWS
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Fig.  29.  Lateral views of the brains of 
a CR 390 mm 8‑months-old fetus (A); 
a 430 mm younger 9‑months-old fetus 
(B); and a 490 mm older 9 months-old 
fetus (C). (After Retzius, 1896. Color 
and labeling added). Major early fissures 
and sulci are outlined in red.  With 
increased age and gyrification, these 
early depressions are much less distinct.
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D 390 mm

E 430 mm

F 490 mm

THE NEOCORTEX IN
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Fig.  29 (continued).  Midline sagittal 
views of the same specimens showing 
the cingulate sulcus, parieto-occipital 
fissure, and the calcarine fissure (red 
outlines) that are not seen in other views.
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G 390 mm

H 430 mm

I 490 mm

THE NEOCORTEX IN
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Fig.  29 (continued).  Dorsal views 
of the same specimens.  Here, the 
interhemispheric fissure and the central 
sulcus are most complete, while most 
other early sulci and fissures have only 
small extensions to the dorsal surface 
(red outlines).  Note how the central 
sulcus is least prominent among the 
increased number of cortical gyri in the 
oldest specimen. 
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J 390 mm

K 430 mm

L 490 mm
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Fig.  29 (concluded).  Ventral views of 
the same specimens showing only the 
interhemispheric and lateral fissures in 
all specimens (red outlines).  A small 
part of the calcarine fissure (red outline) 
is visible in J and K.
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THE CEREBRAL CORTEX AT GW29 and GW 31
A GW29, 260 mm
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Fig. 30 (on this, and the following 5 pages.  Neocortical development as seen in three sets of coronal sections 
from anterior to posterior in a younger third trimester fetus (GW29, Y14-59, CR 260 mm), and an older third 
trimester fetus  (GW31, Y13-59, CR 295 mm).   In these anterior sections that transect the frontal lobe, the major 
developmental changes in the older fetus (B) are the expansion of the white matter, an increase in gyrification 
in the prefrontal, orbitofrontal and cingular cortices, and the beginning of laminar differentiation of the cortical 
plate. compared to the younger fetus (A)
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THE CEREBRAL CORTEX AT GW29 and GW 31
B GW31, 295 mm
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C GW29, 260 mm

THE CEREBRAL CORTEX AT GW29 and GW 31
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Fig. 30 C and D.  The same changes are evident in these sections that transect the paracentral area and the anterior 
temporal lobe.  Note the considerable increase in gyrification of the older specimen.  The stratified transitional field 
is much reduced in both specimens and the white matter is considerably expanded in the older specimen.



77Second and Third Trimesters

THE CEREBRAL CORTEX AT GW29 and GW 31
D GW31, 295 mm
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E GW29, 260 mm
THE CEREBRAL CORTEX AT GW29 and GW 31
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Fig. 30E and F, are sections that transect posterior parietal and temporal lobes and the anterior occipital lobe.  The 
increase in gyrification is very evident in the older specimen, but note that the white matter in the depths of each 
gyrus remains thin in the older specimen.  By comparing both specimens, the reduction in the stratified transitional 
field correlates with expansion of the overlying white matter.
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THE CEREBRAL CORTEX AT GW29 and GW 31
F GW31, 295 mm
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A GW34, 295 mm
THE CEREBRAL CORTEX AT GW34 and GW 37
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Fig. 31 (on this and the following 5 pages).    A comparison of neocortical development in two older third 
trimester fetuses—GW34 (Y232-66, CR 295 mm) and GW37 (Y217-65, CR 350 mm)—at three coronal levels. 
The sections on these pages (A and B) transect only the frontal lobes.
 
Notable developmental differences between the two specimens are the great expansion in the older fetus of 
both the cortical white matter and the gray matter (the fibrous component of the neocortex versus its cellular 
component) by the outward massive expansion of the white matter and the consequent deepening of the 
fissures.  There is by these ages only traces left of the stratified transitional field (STF).  

Hence, the expansion the cortical plate reflects the combined outcome of two coordinated developmental 
processes: First, sojourning neurons—initially residing in the STF—have migrated into the cortical plate 
increasing neuron numbers.  Second, the invasion of corticopetal fibers and the growth of axons from the 
cortical neurons themselves—part of the ongoing organization of the brain’s circuitry—causes the neurons to 
spread farther apart, initially increasing the linear extent of the cortical plate rather than its depth.
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B GW37, 350 mm
THE CEREBRAL CORTEX AT GW34 and GW 37
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Cortical plate

C GW34, 295 mm
THE CEREBRAL CORTEX AT GW34 and GW 37
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Fig. 31C and D.  The sections on these pages transect the paracentral area around the central sulcus and the 
temporal lobe.  The same developmental differences between the two specimens seen the the anterior sections 
(A and B) are evident at this middle level of cortex.
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D GW37, 350 mm
THE CEREBRAL CORTEX AT GW34 and GW 37
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E GW34, 295 mm
THE CEREBRAL CORTEX AT GW34 and GW 37
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Fig. 31E and F.  The sections on these pages transect the posterior parietal and temporal lobes and the anterior 
occipital lobe.  The same developmental differences between the two specimens seen in the anterior  and mid-
level sections (A through D) are evident at this posterior level of cortex.
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F GW37, 350 mm
THE CEREBRAL CORTEX AT GW34 and GW 37
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THE UNDIFFERENTIATED CORTICAL PLATE AT 4 MONTHS
B. PRESUMPTIVE VISUAL CORTEXA. PRESUMPTIVE MOTOR CORTEX
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Fig. 32.  High magnification photomicrographs of the cortical plate—the future gray matter—in the presumptive 
motor cortex (A) and visual cortex (B) of a GW17 (Y37-63, CR 145 mm) fetus.  The cells are tightly packed with 
no indication of a columnar organization, and with little difference in the depth of the plate in the two regions.
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THE UNDIFFERENTIATED CORTICAL PLATE AT 5 MONTHS
B. VISUAL CORTEXA. MOTOR CORTEX
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Fig. 33.  In this GW20 (Y189-61, CR 160 mm) fetus there is considerable increase in the depth of the cortical plate 
in the motor cortex (A) and some also in the shallower visual cortex (B), suggesting migration and settling of young 
neurons from the sojourn zones of the STF.  There is also a notable difference in the width and organization of layer 
1 (the plexiform layer) beneath the pia in the two regions. 
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GROWTH OF THE  CORTICAL PLATE BETWEEN THE SECOND AND THIRD TRIMESTERS

B. VISUAL CORTEX, GW26A. VISUAL CORTEX, GW21
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Fig. 34.  A and B.  Comparison of the cortical plate in the 
visual cortex in a mid-second trimester fetus (Y69-60, 
GW21, CR 170 mm) and an early third trimester fetus 
(Y266-62, GW26, CR 260 mm).  In the younger fetus the 
STF is still prominent and the formative white matter and 
the cortical plate are relatively thin.  In the older fetus, the 
white matter has greatly expanded and the cortical plate is 
thickening with the onset of lamination.  C and D (facing 
page) similar changes are seen in the motor cortex in a 
comparison of the cortical plate in a mid-second trimester 
fetus (Y27-60, GW20,CR 160 mm) and an early third 
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GROWTH OF THE  CORTICAL PLATE BETWEEN THE SECOND AND THIRD TRIMESTERS
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trimester fetus (Y155-64, CR 250 mm).  The spaced, 
columnar arrangement of the cells in the laminating 
cortical plate in the older fetus suggests that the neurons 
migrate at this stage along fibers; presumably ascending 
axons in the visual cortex and descending axons in the 
motor cortex.  The presence of a subpial cellular band 
in B and C is an inconsistent feature of the developing 
neocortex in different specimens.
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REGIONAL DIFFERENCES IN THE CORTICAL GRAY AT 6 MONTHS
A. MOTOR CORTEX B. SENSORY CORTEX C. VISUAL CORTEXC. VISUAL CORTEX
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Fig. 35.  Differentiation of the cortical gray matter in the motor (A), somatosensory (B) and visual areas (C) in 
a 6‑months-old fetus (Y211-65, GW23, 220 mm) shown at higher magnification.  (For low-power views of the 
brain of this specimen, see Fig. 26.)  There are differences in the width of the gray matter in the different areas, a 
pronounced columnar alignment of neuronal cell bodies along radial fibers in all of them, as well as an incipient 
horizontal stratification.  The compactly packed cells of layer 2 may be the least differentiated neurons that are 
settling in the cortical gray matter in an inside-out sequence. 

Fig. 36 (on the following 3 pages).   Illustrations of the ongoing differentiation of the cortical gray matter in a 7 
months-old fetus (Y14-59, GW29, CR 260 mm) at six levels.  The distinctive cytoarchitectonic organization of the 
gray matter in the different areas is becoming more evident.   
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REGIONAL DIFFERENCES IN THE CORTICAL GRAY AT 7 MONTHS
A. FRONTAL CORTEX B. PREMOTOR CORTEX
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Fig. 36A. The granular frontal associational area.  Fig. 36B. The dysgranular premotor area.  
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REGIONAL DIFFERENCES IN THE CORTICAL GRAY AT 7 MONTHS
C. MOTOR CORTEX D. SOMATOSENSORY CORTEX
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Fig. 36C. The agranular motor projection area with 
large Betz cells.  

Fig. 36D. The granular somatosensory projection area.
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REGIONAL DIFFERENCES IN THE CORTICAL GRAY AT 7 MONTHS
E. PARIETAL CORTEX F. VISUAL CORTEX
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Fig 36E. The granular parietal associational area.  Fig. 36F. The super-granular and distinctly laminated 
visual projection area.



95Second and Third Trimesters

DIFFERENTIATING NEOCORTICAL AREAS AT BIRTH
A. SUPERIOR FRONTAL GYRUS
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Fig. 37 (on this page and the next three pages).  Illustration of the close resemblance in 
the laminar differentiation of four neocortical areas in a 9 months-old, full-term newborn 
(Y217-65, CR 350 mm) to that seen in postnatal specimens.  
A. The superior frontal gyrus, an association area, with large upper layers 3 and 4.  
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DIFFERENTIATING NEOCORTICAL AREAS AT BIRTH
B. PRIMARY MOTOR CORTEX IN PRECENTRAL GYRUS
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Fig. 37B. The precentral gyrus, the motor projection area, with large lower layers 5 and 6.  
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DIFFERENTIATING NEOCORTICAL AREAS AT BIRTH
C. SOMATOSENSORY CORTEX IN POSTCENTRAL GYRUS
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Fig. 37C. The postcentral gyrus, the somatosensory projection area, with densely 
packed cells in upper layers 3 and 4.  
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DIFFERENTIATING NEOCORTICAL AREAS AT BIRTH
D. JUNCTION BETWEEN PRIMARY VISUAL CORTEX AND VISUAL ASSOCIATION CORTEX
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Fig. 37D.  The junction between areas 17 and 18, the primary visual projection area (V1, 
left) and the first-order visual association area (V2, right), with the thick upper layer 3 
and 4 and distinctive lamination patterns (note the line of Gennari in layer 4b of V1). 
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C.  NEOCORTICAL DEVELOPMENT FROM BIRTH THROUGH EARLY 
CHILDHOOD

Neocortical Foliation. In its external appearance, the highly foliated neocortex of the full-term 
neonate closely resembles the neocortex of the adult (Fig. 38).  However, it is much smaller.  Brain 
weight increases about three-fold from birth through early childhood, then more modestly during 
late childhood and early adolescence, and begins to diminish slowly during adulthood (Fig. 39).  

THE BRAIN OF A FULL-TERM NEWBORN
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Fig. 38.  The neocortex of a full-term newborn in lateral (A), sagittal (B), dorsal (C), and ventral  (D) views.  
After Retzius (1896).  Although much smaller, the convolutions of all the lobes resemble those seen in adults.  
Coloration and labeling in this and the following illustrations are ours.
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While that postnatal growth is partly attributable to the expansion of some subcortical structures, 
the primary contributor to that growth is the expansion of both the gray matter and the white 
matter of the neocortex.  According to an older histological survey (Blinkov and Glezer, 1968), the 
postnatal expansion of the neocortex is far more pronounced in the frontal and temporal lobes than 
in the occipital lobe (Fig. 40).  That pattern is also suggested by Conel’s (1939-1967) photographs 
of the expanding cerebral cortex between 1 month and 6 years of age, as seen in lateral (Fig. 41) 
and medial (Fig. 42) views.  Paralleling that cortical expansion is the progressive growth of the 
corpus callosum during that period (Fig. 42). 
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EXPANSION OF THE NEOCORTEX FROM
INFANCY TO CHILDHOOD
LATERAL VIEWS

D FOUR YEARS

E SIX YEARS

Fig. 41 (on facing pages).  Lateral views of the postnatally expanding neocortex at the following 
postnatal ages: 
A, 1 month; B, 6 months; C, 2 years; D, 4 years; E, 6 years.  (From Conel’s Figure 3 in volumes 2, 4, 6, 
7, and 8).  
Conel’s photographs have been colored to delineate the different lobes: frontal lobe, blue; paracentral 
lobe, pink; parietal lobe, violet; occipital lobe, green; temporal lobe, orange.   That delineation of 
the different lobes has been aided by the preservation of the surface blood vessels.  The age-related 
expansion of the neocortex appears to be most pronounced in the association areas of the frontal, 
temporal and parietal lobes.
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EXPANSION OF THE NEOCORTEX FROM
INFANCY TO CHILDHOOD
MIDLINE VIEWS

D FOUR YEARS

E SIX YEARS

Fig. 42.  Medial views of the postnatally expanding neocortex at the following postnatal ages: 
A, 1 month; B, 6 months; C, 2 years; D, 4 years; E, 6 years.  (From Conel’s Figure 4 in volumes 2, 3, 
6, 7, and 8).
We colored Conel’s photographs to delineate the different lobes: frontal lobe, blue; paracentral lobe, 
pink; parietal lobe, violet; occipital lobe, green; temporal lobe, orange, cingulate gyrus, yellow.   
The delineation of the different lobes has been aided by the preservation of the surface blood vessels.  
The age-related expansion of the neocortex appears to be most pronounced in the association areas of 
the frontal and parietal lobes and the cingulate gyrus.  Note the age-associated expansion of the corpus 
callosum.
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Figures 43 through 60 (see list on page 108) show neocortical development in the brains of 
neonates, infants and children.  The following text is an abstract of the major changes.

Associated with the expansion of the neocortex during infancy and early childhood is the increase 
in the number and size of sublobules.  Among factors contributing to neocortical expansion are, 
first, the increase in the number of fibers in the lobes, as illustrated by Conel in material prepared 
with the Weigert’s fiber stain in the auditory cortex (Fig. 43) and, second, the increase in short-
distance arcuate fibers between the sublobules, as seen in the motor and somatosensory cortices 
of the paracentral lobe (Fig. 44).  But several other changes also contribute to the expansion of the 
neocortex.   As illustrated in the medial frontal gyrus in material stained to visualize neuronal cell 
bodies, there is an increase in perikaryal size between infancy and childhood and a decrease in their 
packing density (Fig. 45).  The increase in the volume of the neuropil relative to perikaryal volume 
(fiber/cell ratio) is attributable to several factors: initially, an increase in the number, caliber and 
collateralization of cortical afferent and efferent axons; then the increase of association fibers; 
and finally the proliferation of dendrites, as illustrated in the material impregnated with the Golgi 
technique (Fig. 46).  The apical and basal dendrites of pyramidal neurons are thin and have few 
branches in the medial frontal gyrus of the one month-old infant. Dendritic branching increases 
during the following months and reaches its peak at two years of age.  A marked characteristic of 
the dendrites of young children is the immense concentration of small dendritic spines, the sites of 
axodendritic synapses.  There may be a pruning of dendritic spines by 6 years of age.

Neocortical Myelination.  Another important facet of neocortical expansion and maturation is 
myelination.  The myelin sheath is a prerequisite for the rapid and coordinated transmission of 
neural information along axons through a process known as saltatory conduction.  Myelination 
begins with the proliferation of supporting cells that stain for myelin (myelination gliosis); Schwann 
cells peripherally and oligodendroglia cells centrally.  As illustrated in a GW20 fetus, the efferent 
fibers of the spinal motor neurons in the ventral root are myelinating or are myelinated by the 
middle of the second trimester, and the afferent fibers of the dorsal root display advanced reactive 
gliosis (Fig. 47).  Myelination takes place earlier in much of the spinal cord and hindbrain and later 
in the forebrain.  Most of the segmental and intersegmental fiber systems display reactive gliosis in 
the ventral quadrant of the spinal cord during the second trimester.  However, the descending fibers 
of the ventral and lateral corticospinal tracts are free of reactive gliosis.  In addition, advanced 
reactive gliosis is seen dorsally in the ascending afferents of the cuneate funiculus but not yet in 
the gracile funiculus.  By the beginning of the third trimester, as seen in a GW26 fetus, much of 
the cuneate fasciculus is myelinated and reactive gliosis begins in the gracile funiculus.  At the 
time of birth, as seen in a GW37 specimen, all dorsal column fibers are myelinated but most of 
the descending fibers of the lateral and ventral corticospinal tract are still unmyelinated.  In the 
newborn (Fig. 48), fiber tracts in the core of the medulla, pons and cerebellum are myelinated but 
the white matter of the cerebral cortex and the corticospinal tract fibers traversing the pontine gray 
are still unmyelinated.  The descending ventral corticospinal tract is beginning to myelinate in the 
1‑week-old infant and is myelinated in the 4‑months-old infant, but the lateral corticospinal tract is 
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still unmyelinated (Fig. 49).  Reactive gliosis of the lateral corticospinal tract begins during early 
infancy and its full myelination is not achieved until about 2 years of age. 

In his pioneering study of the sequence of myelination in the human cerebral cortex, Paul Flechsig 
(1896) distinguished three regions: the early myelinating sensory and motor projection areas; 
the subsequently myelinating association areas; and the late-myelinating higher psychic areas 
(Fig. 50).  Cecilie and Oscar Vogt (1902, 1904) offered a similar interpretation of the progress of 
neocortical myelination on the basis of their own preparations (Fig. 51).  Our photomicrographs 
of brains in the Yakovlev Collection document the same sequence of myelination as proposed by 
Flechsig and the Vogts.  In Figure 52, a “hot spot” of myelinated fibers in the internal capsule of a 
4 week-old infant is associated with spreading myelination gliosis in the paracentral, somatomotor 
and somatosensory projection areas, while myelination gliosis is absent in the frontal and temporal 
lobes.  In a 6 week-old infant (Fig. 53), myelination gliosis spreads from the internal capsule 
hot spot into the paracentral lobe dorsally and the occipital lobe posteriorly.  Figures 54 through 
57 feature the excellent histological material prepared by the Vogts.  In a sagittaly-sectioned 
brain of a 2‑months-old infant, the fibers in the thalamus, paracentral gyrus and occipital lobe 
are myelinating, and there is indication of the spread of myelination gliosis from the midline 
laterally (Fig. 54);  however, the frontal and temporal lobes show little sign of reactive gliosis in 
this specimen.  Figure 55 illustrates the outward spread of reactive gliosis and myelination in 13 
coronal sections (anterior to posterior) from the brain of a 2.5‑months-old infant.  Figure 56 shows a 
series of 6 sagittal sections (medial to lateral) from the brain of a 3‑months-old infant that show the 
advanced myelination of the white matter in the paracentral lobe and in the internal capsule, with 
two hot spots there, and the myelination of the visual radiation with a hot spot in the occipital lobe.  
While the spread of myelination gliosis is evident throughout the parietal lobe, it is only incipient 
in the frontal and temporal lobes with a medial-to-lateral gradient.  The 12 dorsal-to-ventral 
horizontal sections in Figure 57 from the brain of a 4‑months-old infant show that myelination 
appears to be fully developed in the somatomotor, somatosensory, visual, and auditory projection 
areas, with reactive gliosis spreading to the adjacent association areas.  However, most gyri of the 
prefrontal cortex and the temporal cortex display only incipient reactive gliosis.  In the brain of a 
7‑months‑old child, myelination is far more advanced in the projection and association areas as 
well as in the posterior frontal lobe and parts of the temporal lobe (Fig. 58).  The corpus callosum 
in this specimen displays reactive gliosis anteriorly, and myelination is in progress posteriorly at 
the level of the paracentral lobe.  We complete this survey with two sagittal sections, one from an 
11‑months-old child, the other, from a 2‑year-old child (Fig. 59).  Much of the cortical white matter 
is myelinated in both specimens, including the corpus callosum, with the exception of the white 
matter in some of the frontal gyri.  The last figure in this series highlights delayed myelination in 
the descending corticofugal fibers from the motor cortex.  They are unmyelinated in the pontine 
gray in a newborn, which is in contrast to many of the ascending, regional, and descending fiber 
systems in the medulla and spinal cord (Fig. 60A).  Some transpontine corticofugal fibers are 
myelinated in a 1.5 months-old infant (Fig. 60B), and the bulk of pontine corticofugal fibers are 
myelinated in an 8‑months-old and a 2‑years-old specimen (Fig. 60C,D) 
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AXONAL INCREASE
IN THE AUDITORY CORTEX

TRANSVERSE GYRUS OF HESCHL
A ONE MONTH

B THREE MONTHS

C SIX MONTHS

AXONAL INCREASE
IN THE PARACENTRAL LOBULE

CERVICAL REGION
A ONE MONTH

B THREE MONTHS

C SIX MONTHS

Fig. 43.  Increase in the concentration of axons in the 
medullary layer of the primary auditory cortex  in the 
transverse gyrus of Heschl, in infants aged 1 month (A), 
3 months (B), and 6 months (C).  Weigert fiber stain.  
(From Conel, Vol. 2, Fig. 210; Vol. 3, Fig. 219; Vol. 4, 
Fig. 224).

Fig. 44.  Increase in the concentration of axons in the 
precentral and postcentral gyri  (the somatomotor and 
somatosensory cortices) in infants aged 1 month (A),  
3 months (B), 6 months (C).  Weigert fiber stain.  
(From Conel, Vol. 2, Fig 206; Vol.3, Fig. 196; Vol. 4,  
Fig. 197). 

Fig. 45 (on the following 3 pages).  Photomicrographs of the cortical gray matter in the medial frontal gyrus stained 
for cell bodies (perikarya) at several postnatal ages.  The neuronal cell bodies are relatively small in the early 
postnatal months but increase in size thereafter in association with a decrease in perikaryal packing density.  The 
expansion of the neuropil is attributable to the space occupied by non-staining axons and dendrites. 
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NISSL-STAINED NEURONS IN THE MEDIAL FRONTAL GYRUS
A INFANT-ONE MONTH B INFANT-THREE MONTHS
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Fig. 45A. 1 month, (From Conel, Vol. 2, Fig. 59)             Fig. 45B. 3 months,. (From Conel, Vol. 3, Fig. 25)
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NISSL-STAINED NEURONS IN THE MEDIAL FRONTAL GYRUS
C INFANT-SIX MONTHS D CHILD-TWO YEARS
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Fig. 45C. 6 months. (From Conel, Vol. 4, Fig. 49)             Fig. 45D. 2 years (From Conel, Vol. 6, Fig. 37)
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NISSL-STAINED NEURONS IN THE MEDIAL FRONTAL GYRUS
E CHILD-FOUR YEARS F CHILD-SIX YEARS
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Fig. 45E. 4 years (From Conel, Vol. 7, Fig. 25).                Fig. 45F. 6 years (From Conel, Vol. 8, Fig. 25).  
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GOLGI-STAINED NEURONS IN THE MEDIAL FRONTAL GYRUS
A INFANT-ONE MONTH B INFANT-THREE MONTHS
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Fig. 46 (on this and the following 2 pages).  Camera lucida drawings of Golgi-impregnated neurons and their 
processes in the medial frontal gyrus at several postnatal ages.  There is a progressive increase in the branching 
and thickening of the apical and basal dendrites, and in the proliferation of dendritic spines, a site of axodendritic 
synapses, through infancy and early childhood. A . 1 month (From Conel, Vol. 2, Fig.62)  B. 3 months (From 
Conel, Vol. 3, Fig. 28).
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GOLGI-STAINED NEURONS IN THE MEDIAL FRONTAL GYRUS
C INFANT-SIX MONTHS D CHILD-TWO YEARS
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Fig. 46C. 6 months (From Conel, Vol. 4, Fig. 52).             Fig. 46D. 2 years (From Conel, Vol. 6, Fig. 40). 
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GOLGI-STAINED NEURONS IN THE MEDIAL FRONTAL GYRUS
E CHILD-FOUR YEARS F CHILD-SIX YEARS
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Fig. 46E. 4 years (From Conel, Vol. 7, Fig. 28).                          Fig. 46F. 6 years (From Conel, Vol. 8, Fig. 28).
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REACTIVE GLIOSIS AND MYELINATION
IN THE SPINAL CORD
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Fig. 47.   
Myelin-stained coronal sections of the 
spinal cord in a GW20 (Y27-60), GW26 
(Y60-61), and GW37 (Y117-61) fetuses.   
A. In the GW20 fetus, the ventral root 
motor fibers are myelinating and the 
dorsal root sensory fibers are undergoing 
myelination gliosis peripherally.  
Centrally, advanced myelination gliosis 
is evident in many of the ventral fiber 
tracts and in components of the ascending 
fibers of the cuneate funiculus in the 
dorsal horn.  Myelination gliosis has 

not yet begun in the 
descending fibers of 
the lateral and ventral 
corticospinal tracts.   
B. In the GW26 
fetus, the fibers of the 
cuneate funiculus are 
myelinating, as are 
components of the 
gracile funiculus, but 
myelination gliosis has 
not yet begun in the 
corticospinal tracts.    
C. In the GW37 
fetus, virtually 
all components 
of the spinal cord 
white matter are 
myelinated, except 
for most of the fibers 
in the corticospinal 
tracts.   The lateral 
corticospinal tract is 
beginning to myelinate 
in its ventromedial part.
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THE NEONATE BRAIN IN SAGITTAL SECTION-MYELIN STAIN
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Fig. 48.  A.  Photomicrograph of a myelin-stained sagittal section of the brain of a neonate (Y62-61).  Note the 
presence of myelin-stained (opaque) fibers in the cerebellum, medulla and spinal cord and their absence in the 
neocortex and the thalamus. B.  The pontine region at higher magnification in another neonate (Y235-66).  Unlike 
fibers of the inferior cerebellar peduncle and the rubrospinal tract, the descending corticospinal fibers traversing the 
pontine gray and the pontocerebellar fibers are unmyelinated.
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SPINAL CORD MYELINATION IN INFANTS AND CHILDREN
A 1 WEEK OLD

B 4 MONTHS OLD
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Fig. 49 (facing pages). Myelin-stained sections of the spinal cord.  The fibers of the ipsilaterally projecting ventral 
corticospinal tract are myelinated in all these specimens.  In contrast, the lateral corticospinal tract displays reactive 
gliosis in the infants, followed by its myelination in the toddler and young child. 
A, a 1‑week-old (Y23-60) infant;  
B, a 4‑months-old infant (Y286-62);  
C, an 11‑months-old (Y132-61) toddler;  
D, a 2‑year-old (Y425-63) child. 
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SPINAL CORD MYELINATION IN INFANTS AND CHILDREN
C 11 MONTHS OLD

D 2 YEARS OLD
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PROGRESSIVE MYELINATION IN THE NEOCORTEX
(AFTER FLECHSIG)
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Fig. 50.  The temporal sequence of myelination, according to Flechsig, in the lateral (A) and medial (B) 
aspect of the neocortex.  Purple: primary projection areas. Green and dark blue: association areas.  Light 
blue: higher-order integrative areas.  Modified, after Ariëns Kappers et al. (1936). 
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PROGRESSIVE MYELINATION IN THE NEOCORTEX
(AFTER THE VOGTS)
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Fig. 51.  The sequence of myelination, according to the Vogts, in the lateral (A) and medial (B) aspect 
of the neocortex.  Purple: primary projection areas. Green and dark blue: association areas.  Light blue: 
higher-order integrative areas.  Modified, after Ariëns Kappers et al. (1936).
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THE MYELINATING BRAIN IN A
4-WEEK INFANT CORONAL SECTIONS

A
FRONTAL LEVEL

B
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LEVEL

C
DETAIL OF
LEVEL B 
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Fig. 52. Photomicrographs of myelin-
stained coronal sections of the brain of a 
4‑weeks-old infant (Y28-60).  
A. Anteriorly in a section through the 
frontal lobe and basal ganglia, the fibers 
of the optic nerve and chiasm (bottom) 
are myelinated.  But corticofugal fibers 
traversing the basal ganglia and the 
fibers crossing in the corpus callosum are 
unmyelinated.   
B. More posteriorly, at the level of 
the paracentral lobe and the thalamus, 
the fibers of the internal capsule are 
myelinated and lightly staining fibers 
spread from this “myelination hot spot” 
dorsally into the paracentral lobe and 
ventrally into the temporal lobe.  More 
distally, the darkly stained specks are 
interpreted as indicative of myelination 
gliosis, a stage preceding the myelination 
of axons.   
C. A higher magnification photo-
micrograph showing the reactive specks 
and fragments preceding the spread of 
myelination from the hot spot.
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THE MYELINATING BRAIN IN A 6-WEEK INFANT
PARASAGITTAL SECTIONS
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Fig. 53.  Photomicrographs of myelin-stained parasagittal sections from the brain of a 6‑weeks-old infant (Y152-61) at 
a lower (A) and a higher magnification (B), showing the spread of the “myelination hot spot” from the telencephalic-
diencephalic junction to the corticofugal fibers traversing the basal ganglia, and to the somatomotor and somatosensory 
projection areas.  Myelination is also spreading along the dorsal and ventral components of the optic radiation to the 
occipital lobe.  Note the absence of myelination in the frontal and parietal lobes. 
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Lingula

THE MYELINATING BRAIN IN A 2-MONTH INFANT
 PARASAGITTAL SECTIONS

A
O. VOGT, VOL. 1
TABLE 145, 2

B
O. VOGT, VOL. 1
TABLE 146, 1
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Fig. 54 (facing page).  Myelin-stained parasagittal sections of the brain of a 2 months-old infant (brain E2, 
the Vogts’ collection) from medial (A) to lateral (B). Three regions may be distinguished that are indicated by 
three different asterisks.  (i) Opaque regions and those with recognizable myelinated axons cut longitudinally 
or transversely.  These are spreading from “hot spots” (first asterisk) in the internal capsule at the telencephalic-
diencephalic junction to myelinating fibers in the projection areas (second asterisk) of the motor, somatosensory 
and visual cortices, and to the basal ganglia and the thalamus. (ii) Speckled regions (third asterisk) in the proximal 
region of the frontal, parietal and temporal lobes, reflecting oligodendrocytes undergoing myelination gliosis.  (iii) 
Regions devoid of stained cells (no asterisks) in the distal regions of the frontal and temporal lobes, interpreted as 
areas not yet mature enough to undergo myelination.

Fig. 55 (on the following 8 pages).  13 myelin-stained coronal sections from the brain of a 2.5 months-old infant 
(E13, Vogts’ collection) from anterior to posterior.   As in Fig. 54, various degrees of myelinatin are indicated by 3 
different asterisks: myelinated axons (asterisk 1), myelinating axons (asterisk 2), myelination gliosis (asterisk 3).  
Unmyelinated fibers have no asterisk designation.
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THE MYELINATING BRAIN IN A 2.5-MONTH INFANT
CORONAL SECTIONS FROM ANTERIOR TO POSTERIOR

A
O. VOGT, VOL. 1
TABLE 121, 3

B
O. VOGT, VOL. 1
TABLE 121, 1

C
O. VOGT, VOL. 1
TABLE 120, 1
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Fig. 55A. At the most anterior level, the white 
matter of the frontal gyri contains reactive cells 
proximally (near the interhemispheric fissure) 
but reative cells are few and faint distally.   
B.  Heavy myelination gliosis is evident in 
the inferior prefrontal gyrus and the adjacent 
superior orbitofrontal gyrus.  Dorsal and 
medial regions have faint myelination gliosis. 
C. Still more posteriorly, the same lateral 
areas are myelinating and there is pronounced 
myelination gliosis in the middle and superior 
frontal gyri.  The congulate gyrus and the 
medial orbitofrontal gyri have faint myelination 
gliosis.
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THE MYELINATING BRAIN IN A 2.5-MONTH INFANT
CORONAL SECTIONS FROM ANTERIOR TO POSTERIOR
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TABLE 118, 1
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Fig. 55D and E. Proceeding back towards the paracentral region, myelination is in progress in the precentral 
somatomotor gyrus, in the superior frontal gyrus, and in the internal capsule.  Note the myelinated fibers in the optic 
tract (E).
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Corpus callosum

THE MYELINATING BRAIN IN A 2.5-MONTH INFANT
CORONAL SECTIONS FROM ANTERIOR TO POSTERIOR

F
O. VOGT, VOL. 1
TABLE 116, 1
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TABLE 115, 2
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Fig. 55F and G. Myelinated fibers are in the somatomotor precentral gyrus and the somatosensory postcentral 
gyrus.  Myelinated corticofugal fibers can be followed from the internal capsule to the cerebral peduncle and the 
corticospinal tract traversing the pons.  Note the lack of myelination gliosis in the basolateral temporal lobe. 
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THE MYELINATING BRAIN IN A 2.5-MONTH INFANT
CORONAL SECTIONS FROM ANTERIOR TO POSTERIOR

H
O. VOGT, VOL. 1
TABLE 114, 2
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Fig. 55H.  This section contains the most myelinated fibers.  Hot spots in the internal capsule radiate into myelinated 
fibers in the precentral gyrus, postcentral gyrus, and the presumptive primary auditory cortex in the superior temporal 
gyrus.  The myelinated fibers circumventing the hippocampus may be part of the visual radiation.  Note that the 
superior colliculus is full of myelinated fibers (retinal fibers from the optic tract).  The lateral lemniscus is heavily 
myelinated as it enters the inferior colliculus.  Thus, all the primary sensory and primary motor areas are the first to 
be myelinated. 
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THE MYELINATING BRAIN IN A 2.5-MONTH INFANT
CORONAL SECTIONS FROM ANTERIOR TO POSTERIOR

I
O. VOGT, VOL. 1
TABLE 113, 2 Primary somatosensory cortex

Primary motor cortex

Internal
capsule
Internal
capsule

HippocampusHippocampus

Cingulate
gyus
Cingulate
gyus

❃❃

❃❃

❃❃

❄❄

❄❄

❄❄
❋❋

❋❋

Corpus callosum

Precentral
gyri

Central sulcus

Temporal gyri

Temporal-occipital gyri
(fusiform)

Parietal gyri
(supramarginal)

Occipital
gyrus
(lingula)

Postcentral
gyri

❋
❃
❄

MYELINATED FIBERS

MYELINATING FIBERS

MYELINATION GLIOSIS

Visual radiation?Visual radiation?

Fig. 55I. The only myelinated regions in this section are the primary somatosensory cortex in the 
postcentral gyrus and the myelinated fibers in the presumptive visual radiation.  Most of the internal 
capsule at this level has only myelination gliosis.  There is faint myelination gliosis in the parietal 
and temporal lobes and very faint gliosis in the cingulate gyrus. 
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THE MYELINATING BRAIN IN A 2.5-MONTH INFANT
CORONAL SECTIONS FROM ANTERIOR TO POSTERIOR

J
O. VOGT, VOL. 1
TABLE 112, 1

❃❃

❄❄

❄❄

❄❄
❄❄

❄❄

❄❄

❄❄
❋❋

Calcarine �ssureCalcarine �ssure

Temporal gyri

Temporal-occipital gyri (fusiform)

Parietal gyri

Parietal gyri
(precuneus)

Occipital
gyrus
(lingula)

Postcentral)
gyrus

❋
❃
❄

MYELINATED FIBERS

MYELINATING FIBERS

MYELINATION GLIOSIS

Visual
radiation

Visual
radiation

Internal
capsule
Internal
capsule

Primary visual cortex

Parieto-occipital �ssureParieto-occipital �ssure

Fig. 55J.  The visual radiation is myelinated and connects with a thin myelinated fiber bundle running 
through the internal capsule.  The visual fibers spread into myelinating regions in the lingula of the 
primary visual cortex.  All the other gyri have very faint myelination gliosis.
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THE MYELINATING BRAIN IN A 2.5-MONTH INFANT
CORONAL SECTIONS FROM ANTERIOR TO POSTERIOR

K
O. VOGT, VOL. 1
TABLE 111, 2

❃❃

❃❃

❄❄

❄❄

❄❄

❄❄

❄❄

❄❄

❋❋

Calcarine
�ssure
Calcarine
�ssure

Parieto-occipital �ssureParieto-occipital �ssure

Temporal-occipital (fusiform) gyrus

Temporal (inferior) gyrus

Lateral parietal gyri

Lateral occipital gyri

Medial parietal gyrus
(precuneus)

Occipital gyri (lingula)

Occipital gyrus (cuneus)

Primary visual cortex

❋
❃
❄

MYELINATED FIBERS

MYELINATING FIBERS

MYELINATION GLIOSIS

Visual
radiation

Visual
radiation

Fig. 55K. As in Fig. 55J, the visual radiation fibers are myelinated and fan out into myelinating fibers in the primary 
visual cortex that surrounds the calcarine fissure.  There is only faint myelination gliosis in the parietal and temporal 
lobes, with the exception of a hook-like fiber bundle in one of the lateral parietal gyri.
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THE MYELINATING BRAIN IN A 2.5-MONTH INFANT
CORONAL SECTIONS FROM ANTERIOR TO POSTERIOR

L
O. VOGT, VOL. 1
TABLE 110, 4

M
O. VOGT, VOL. 1
TABLE 110, 1

❃❃ ❃❃

❃❃

❄❄

❄❄

❄❄ ❄❄❄❄

❄❄

❄❄

❋❋

❋❋

❋❋

Calcarine
�ssure

Calcarine
�ssure

Parieto-occipital �ssureParieto-occipital �ssure

Temporal-occipital (fusiform) gyrus

Temporal-occipital (fusiform) gyri

Lateral parietal gyri

Lateral
occipital
         gyri

Lateral
occipital
         gyri

Medial parietal gyri
(precuneus)

Occipital
gyri
(lingula)

Occipital
gyri
(cuneus)

Occipital
gyri
(cuneus)

Primary visual
                   cortex

Primary visual
                   cortex

❋
❃
❄

MYELINATED FIBERS

MYELINATING FIBERS

MYELINATION GLIOSIS

Visual
radiation

Visual
radiation

Visual
radiation

Visual
radiation

Fig. 55L and M.  The only myelinated fibers in these two sections are in the visual radiation fanning out to the primary 
visual cortex surrounding the calcarine fissure in the occipital lobe.  Note that the primary visual cortex is more 
heavily myelinated in L than in Fig. 55J.  Myelinating fibers fan out to adjacent gyri in the parietal, temporal and the 
remaining gyri of the occipital lobe from a core area (L) in the primary visual cortex. 

Fig. 56 (on the following 6 pages).  Myelin-stained parasagittal sections of the brain of a 3 months-old infant (E1, 
Vogts’ collection) from medial to lateral (A to F). 
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THE MYELINATING BRAIN IN A 4-MONTH INFANT
HORIZONTAL SECTIONS FROM DORSAL TO VENTRAL

A
O. VOGT, VOL. 1
TABLE 167, 1

Occipital gyrus
(cuneus)

Parietal gyri
(medial)Parietal gyri

(lateral)
PrecuneusPrecuneus

Frontal gyri

Precentral gyrus
(lateral)

Precentral gyrus
(medial)

Postcentral gyrus
(lateral)

Postcentral gyrus
(medial)

Central sulcus (lateral)

Central sulcus (medial)

Parieto-occipital �ssure

Cingulate sulcus (marginal branch)

Primary visual cortex

❋
❃
❄

MYELINATED FIBERS

MYELINATING FIBERS

MYELINATION GLIOSIS

❃❃

❃❃

❄❄

❄❄

❄❄

❄❄

❋❋

❋❋

❋❋❋❋

Primary somatosensory cortex

Primary motor cortex

Fig. 57 (on this and the following 10 pages).  12 myelin-stained horizontal sections from the brain of a 4-months-
old infant (brain E8, Vogts’ collection) from dorsal to ventral.  A and B (facing pages). Myelination is well 
advanced in the primary motor and primary somatosensory cortical areas, and reactive gliosis is spreading to gyri in 
the adjacent frontal and parietal lobes. 
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THE MYELINATING BRAIN IN A 4-MONTH INFANT
HORIZONTAL SECTIONS FROM DORSAL TO VENTRAL

B
O. VOGT, VOL. 1
TABLE 167, 2

Occipital gyrus
(cuneus)

Parietal gyri
(medial)

Parietal gyri
(lateral)

Precuneus

Precuneus

Frontal gyri

Precentral gyrus

Postcentral gyrus

Central sulcus

Parieto-occipital �ssure

Cingulate sulcus (marginal branch)

Cingulate sulcus

❋
❃
❄

MYELINATED FIBERS

MYELINATING FIBERS

MYELINATION GLIOSIS

❃❃

❃❃

❃❃

❃❃

❄❄

❄❄

❄❄

❄❄

❄❄

❋❋

❋❋

❋❋

❋❋

❋❋

❋❋

Cingulate gyrus

SupramarginalSupramarginal

AngularAngular
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THE MYELINATING BRAIN IN A 4-MONTH INFANT
HORIZONTAL SECTIONS FROM DORSAL TO VENTRAL

C
O. VOGT, VOL. 1
TABLE 167, 3

Occipital gyrus
(cuneus)

Parietal gyrus
(precuneus)

Parietal gyrus
(supramarginal)

Parietal gyrus
(angular)

Temporal gyri

Frontal gyri

Precentral gyrus

Postcentral gyrus

Central sulcus

Parieto-occipital �ssure

Cingulate sulcus

Internal capsule
(entry area)

Internal capsule
(entry area)

Myelinated and
myelinating �ber
bundles in deep
cerebral white
matter

Co
rp

us
 c

al
lo

su
m

Co
rp

us
 c

al
lo

su
m

Cingulate sulcus

❋
❃
❄

MYELINATED FIBERS

MYELINATING FIBERS

MYELINATION GLIOSIS

❃❃

❃❃

❃❃❃❃

❃❃❄❄

❄❄

❄❄

❄❄

❄❄

❄❄

❋❋
❋❋

❋❋

❋❋

❋❋
❋❋

Cingulate gyrus

Fig. 57C and D (facing pages). Myelination is advanced in the internal capsule where it enters the precentral and 
postcentral gyri.  The corpus callosum myelinates only in a central part.  The myelinated visual radiation extends 
into the cuneus of the occipital lobe. 
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THE MYELINATING BRAIN IN A 4-MONTH INFANT
HORIZONTAL SECTIONS FROM DORSAL TO VENTRAL

D
O. VOGT, VOL. 1
TABLE 168, 1

Occipital gyri

Parietal gyrus
(precuneus)

Parietal gyrus
(supramarginal)

Parietal gyrus
(angular)

Temporal gyri

Frontal gyri

Precentral gyrus

Postcentral gyrus

Central sulcus

Parieto-occipital �ssure

Cingulate sulcus

Internal capsule
(entry area)

Internal capsule
(entry area)

Myelinated and
myelinating �ber
bundles in deep
cerebral white
matter

Co
rp

us
 c

al
lo

su
m

Co
rp

us
 c

al
lo

su
m

Cingulate sulcus

❋
❃
❄

MYELINATED FIBERS

MYELINATING FIBERS

MYELINATION GLIOSIS

❃❃

❃❃

❃❃

❃❃

❃❃

❃❃❄❄

❄❄

❄❄

❄❄

❄❄

❄❄

❄❄
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❋❋
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THE MYELINATING BRAIN IN A 4-MONTH INFANT
HORIZONTAL SECTIONS FROM DORSAL TO VENTRAL

E
O. VOGT, VOL. 1
TABLE 168, 2

Occipital gyri

Parietal gyrus
(precuneus)

Parietal- temporal gyri

Frontal gyri

Precentral gyrus

Postcentral gyrus

Central sulcus

Lateral �ssure

Parieto-occipital �ssure

Cingulate sulcus

Fornix

Corpus callosum
(splenium)

Corpus callosum
(genu)

CaudateCaudate

Fiber bundles
in internal capsule

Fiber bundles
in internal capsule

Visual radiationVisual radiation

Myelinated and
myelinating �ber
bundles in deep

cerebral white
matter

Cingulate sulcus

❋
❃
❄

MYELINATED FIBERS

MYELINATING FIBERS

MYELINATION GLIOSIS

❃❃

❃❃

❃❃

❃❃

❃❃

❄❄

❄❄

❄❄

❄❄

❄❄

❋❋

❋❋

❋❋

❋❋

Cingulate gyrus

Cingulate gyrus
(retrosplenial area)

Basal
ganglia

Basal
ganglia

La
te

ra
l v

en
tri

cl
e

Lateral ventricle

THALAMUSTHALAMUS

Fig. 57E and F (facing pages). 
Fiber bundles in the internal capsule 
are associated with the myelinated fibers 
wrapping around the thalamus.  Note the 
trajectories of myelinated and unmyelinated 
fiber bundles heading into the frontal gyri.   The 
corpus callosum has some myelination gliosis in 
dorsal parts of the splenium (E) but not ventrally (F); 
the genu has no gliosis.  A more complete path of the 
myelinated visual radiation can be seen in these sections .
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THE MYELINATING BRAIN IN A 4-MONTH INFANT
HORIZONTAL SECTIONS FROM DORSAL TO VENTRAL

F
O. VOGT, VOL. 1
TABLE 168, 3

Occipital gyri

Parietal gyrus
(precuneus)

Temporal gyri

Frontal gyri

Precentral gyrus

Postcentral gyrus

Insula
Insula

Central sulcus

Lateral �ssure

Parieto-occipital �ssure

Cingulate sulcus

Cingulate sulcus

Fornix
Th

ird
 v

en
tr

ic
le

Corpus callosum
(splenium)

Corpus callosum
(genu)

Fornix

CaudateCaudate

Pu
ta

m
en

Pu
ta

m
en

Fiber bundles
in internal capsule

Fiber bundles
in internal capsule

Visual radiationVisual radiation

❋
❃
❄

MYELINATED FIBERS

MYELINATING FIBERS

MYELINATION GLIOSIS

❃❃

❃❃

❃❃

❃❃
❃❃

❄❄

❄❄

❄❄

❄❄

❋❋

❋❋

❋❋

Cingulate gyrus

Cingulate gyrus
(retrosplenial area)

Basal
ganglia

Basal
ganglia
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Lateral ventricle

THALAMUSTHALAMUS
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THE MYELINATING BRAIN IN A 4-MONTH INFANT
HORIZONTAL SECTIONS FROM DORSAL TO VENTRAL

G
O. VOGT, VOL. 1
TABLE 169, 1

Occipital gyri

Hippocampus
Hippocampus

Temporal gyri

Frontal gyri

Precentral gyrus

Postcentral gyrus

I
n

s
u

l
a

I
n

s
u

l
a

Central sulcus

Lateral �ssure

Calcarine �ssure

Lateral �ssure

Cingulate sulcus

Fornix

Th
ird

 v
en

tr
ic

le

Corpus callosum
(genu)

CaudateCaudate

Pu
ta

m
en

Pu
ta

m
en

Internal capsuleInternal capsule

Internal capsuleInternal capsule

Primary auditory cortex?

Primary auditory cortex?

LingulaLingula

❋
❃
❄

MYELINATED FIBERS

MYELINATING FIBERS

MYELINATION GLIOSIS

❃❃

❃❃

❃❃

❃❃

❄❄

❄❄

❄❄

❄❄

❋❋

❋❋

❋❋

❋❋

❋❋

Cingulate gyrus

Cingulate gyrus
(retrosplenial area)

Basal
ganglia

Basal
ganglia

La
te

ra
l

ve
ntri

cle

Lateral ventricle

THALAMUSTHALAMUS

Fig. 57G and H (facing pages). 
Myelinated fibers are spreading 
to the presumptive auditory cortex 
in the temporal lobe.  Myelination 
gliosis is still faint in the frontal lobe and 
the cingulate gyrus.  The visual radiation is 
heavily myelinated.  Note the exquisite detail 
of myelinated fiber bundles extending from the 
anterolateral thalamus towrd the internal capsule.
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THE MYELINATING BRAIN IN A 4-MONTH INFANT
HORIZONTAL SECTIONS FROM DORSAL TO VENTRAL

H
O. VOGT, VOL. 1
TABLE 169, 2

Occipital gyri

Hippocampus
Hippocampus

Temporal gyri

Frontal gyri

I
n

s
u

l
a

I
n

s
u

l
a

Lateral �ssure

Calcarine �ssure

Cingulate sulcus

Fornix

Septum
Frontal

operculum
Frontal

operculum

Th
ird

 v
en

tr
ic

le

Globus

pallid
us

Globus

pallid
us

Corpus callosum
(genu)

Caudate

Caudate

Putamen

Putamen

Internal capsuleInternal capsule

Internal capsuleInternal capsule

LingulaLingula

❋
❃
❄

MYELINATED FIBERS

MYELINATING FIBERS

MYELINATION GLIOSIS

❃❃

❃❃

❃❃

❃❃

❄❄

❄❄

❄❄

❄❄

❋❋

❋❋

❋❋

❋❋

Cingulate gyrus

Cingulate gyrus
(retrosplenial area)

Basal
ganglia

Basal
ganglia

THALAMUSTHALAMUS

Lateral
ventricle
Lateral

ventricle

Lateral
ventricle
Lateral

ventricle
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THE MYELINATING IN A 4-MONTH INFANT
HORIZONTAL SECTIONS FROM DORSAL TO VENTRAL

I
O. VOGT, VOL. 1
TABLE 169, 3

Occipital gyri

Hippocampus
Hippocampus

Temporal gyri

Orbitofrontal gyri

I
n

s
u

l
a

I
n

s
u

l
a

Lateral �ssure

Calcarine �ssure

Cingulate sulcus

Fusiform
gyrus

Fusiform
gyrus

Th
ird

 v
en

tr
ic

le

Nucleus

accum
bens

Nucleus

accum
bens

Globus

pallid
us

Globus

pallid
us

Pu
ta

m
en

Pu
ta

m
en

Internal capsuleInternal capsule

LingulaLingula

❋
❃
❄

MYELINATED FIBERS

MYELINATING FIBERS

MYELINATION GLIOSIS

❃❃

❃❃ ❃❃

❄❄

❄❄

❄❄

❄❄

❄❄

❋❋

❋❋

Cingulate gyrus

Parahippocampal gyrus

Basal
ganglia

Basal
ganglia

THALAMUSTHALAMUS

Lateral
ventricle
Lateral

ventricle

SUBTHALAMUSSUBTHALAMUS

Fig. 57I and J (facing pages). 
Myelinated fibers are most 
prominent in the visual projection 
areas in the occipital lobe and in the 
fibers curving around the hippocampus 
(probably the visual radiation).  Note 
the lack of myellination gliosis in the 
orbitofrontal gyri, the cingulite gyrus, and 
much of the temporal lobe.  The thalamus is 
filled with a wealth of myelinated fiber bundles 
traversing its various nuclear components.
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THE MYELINATING BRAIN IN A 4-MONTH INFANT
HORIZONTAL SECTIONS FROM DORSAL TO VENTRAL

J
O. VOGT, VOL. 1
TABLE 170, 1

Occipital gyri

Hippocampus
Hippocampus

Temporal gyri

Orbitofrontal gyri

I
n

s
u

l
a

I
n

s
u

l
a

Lateral �ssure

Cingulate sulcus

Th
ird

 v
en

tr
ic

leOptic
 tr

act

Optic
 tr

act

Nucleus
accumbens

Nucleus
accumbens

LingulaLingula

❋
❃
❄

MYELINATED FIBERS

MYELINATING FIBERS

MYELINATION GLIOSIS

❃❃

❄❄

❄❄

❄❄

❄❄

❄❄

❋❋

❋❋

Cingulate gyrus

Parahippocampal gyrus

THALAMUSTHALAMUS

Lateral
ventricle
Lateral

ventricle

SUBTHALAMUSSUBTHALAMUS

Fusiform
gyrus

Fusiform
gyrus
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THE MYELINATING BRAIN IN A 4-MONTH INFANT
HORIZONTAL SECTIONS FROM DORSAL TO VENTRAL

K
O. VOGT, VOL. 1
TABLE 170, 2

L
O. VOGT, VOL. 1
TABLE 170, 3

Occipital
gyrus

Occipital
gyri

HippocampusHippocampus

Temporal
gyri

Temporal
gyri

Temporal-
occipital

gyrus
(fusiform)

Temporal-
occipital

gyrus
(fusiform)

Orbitofrontal
gyri

Lateral �ssure

Optic nerve

AlveusAlveus

Optic tract

Amygdala
Amygdala

Am
yg

dala

Am
yg

dala

LingulaLingula

❋
❃
❄

MYELINATED FIBERS

MYELINATING FIBERS

MYELINATION GLIOSIS

❃❃

❄❄

❄❄

❄❄
❄❄

❋❋

❋❋

❋❋

❋❋

Parahippocampal
gyrus

Parahippocampal
gyrus

Lateral
ventricle
Lateral

ventricle

Fig. 57K and L. The only myelinated fibers at these ventral levels are those in the alveus surrounding the 
hippocampus itself and the deep parts of the parahippocampal gyrus.  Myelinated fibers appear to be extending from 
the amygdala in a hook bundle that goes into the parahippocampal gyrus. Ventral parts of the orbitofrontal gyri, 
temporal gyri, and occipital gyri have only faint myelination gliosis.
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THE MYELINATING BRAIN IN A 7-MONTH CHILD
CORONAL SECTIONSA
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Fig. 58.  
Myelin-stained 

coronal sections 
of the brain of a 

7‑months-old child 
from the Yakovlev 

collection (Y123-
61).  A. Myelination 

is well advanced in the 
posterior portion of the 

frontal lobe but is still in an early stage in the inferior cingulate gyrus dorsally and in the orbitofrontal gyri ventrally.  
B. More posteriorly, the somatomotor and somatosensory paracentral gyri are well myelinated.  On the input side 
to the neocortex, the somatosensory medial lemniscus and the capsule of the visual lateral geniculate nucleus are 
well myelinated.  On the output side, the corticospinal fibers traversing the pontine gray are well myelinated.  The 
temporal gyri, with the exception of the auditory cortex, are still in an early myelination stage. 
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Fig. 60 (facing pages).  The myelination of the descending transpontine corticospinal tract in sagittal sections.
  
A. The corticospinal tract fibers are unmyelinated in the brain of this neonate (Y62-61).  
B. Some corticospinal tract fibers are myelinated, others are unmyelinated in this 1.5‑months-old infant (Y152-61).  
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INTERPRETATIONS AND HYPOTHESES

D.  THE FIRST STAGE OF HUMAN NEOCORTICAL DEVELOPMENT: 
THE PROLIFERATION AND STOCKPILING OF NEURONAL PRECURSOR CELLS

The Neuroepithelium.  In vertebrates, early embryonic development is based on the formation of 
three germ layers, the endoderm, mesoderm and ectoderm.  Proliferating endodermal cells give 
rise to the viscera: the linings of the stomach, intestines and colon, the pancreas, liver, and urinary 
bladder, the trachea and bronchi of the lungs, and most of the endocrine glands.  Proliferating 
mesodermal cells form the smooth, skeletal and cardiac muscles; the vessels of the circulatory 
system; and the bones and cartilage.  The proliferating cells of the ectoderm develop into such 
peripheral structures as the sense organs, and the peripheral and autonomic nervous systems.  
Notably, however, the neurons and neuroglia of the brain and spinal cord of vertebrates originate 
in a distinct proliferative derivative of the ectoderm, the neuroepithelium (NEP), a germinal matrix 
that becomes separated from the surface ectoderm early during embryonic development. We 
consider the vertebrate NEP a fourth germ layer that has properties fundamentally different from 
the other germ layers.  

The NEP is identified in the early vertebrate embryo as a flat sheet of columnar ectodermal cells, 
known as the neural plate.  At this stage, the proliferative cells of this open NEP are in contact with 
the fluid system of the embryonic sac, like the other germ layers.  But then the neural plate bends 
and successively forms the neural groove, the neural folds, and the lateral edges of these folds 
that will fuse in the dorsal midline, forming a neural tube.  This neural tube surrounds the closed 
NEP, a thin tube along the trunk (spinal cord and lower medulla) and enlarged brain vesicles in 
the head region.  The columnar cells of the NEP become spindle shaped and form a widening 
pseudostratified germinal matrix, where the nuclei of dividing cells shuttle inward to the core 
cerebrospinal fluid pool when they undergo mitosis, and outward as they prepare to divide again 
(Sauer, 1936).  Henceforth, with one exception, the NEP cells proliferate along the shoreline of 
a single, compartmentalized midline cerebrospinal fluid pool along the neuraxis: the spinal canal 
caudally, and the medullary, pontine, cerebellar, mesencephalic, diencephalic and telencephalic 
ventricles rostrally (Fig. 61).  The exception is the late-forming telencephalic NEP, which in 
mammals lines two separate spherical compartments, the right and left lateral ventricles.  The 
telencephalic NEP that forms around the lateral ventricles is the proliferative source of neurons of 
three large brain systems: the basal ganglia (caudate, putamen, globus pallidus), several midline 
ganglionic (septum) and paleocortical structures (primary olfactory cortex, hippocampus), and the 
large convexity of the cerebral hemispheres, the neocortex.  

The Human Telencephalic Neuroepithelium. Human central nervous system development is initially 
very similar to that of other mammals, with the elongated NEP of the spinal cord forming along the 
trunk, and the NEP of the medulla, cerebellum, mesencephalon, diencephalon and telencephalon 
forming in the head region.  There are similarities in the early development of the telencephalic 
NEP in all mammals, particularly primates and man, but a major difference emerges between 
lower and higher primates and between apes and man.  The neocortex of higher primates and man 
is greatly enlarged and far more convoluted than those of lower primates, and that is linked with 
the lengthened period of cortical development.  The functional significance of the development of 
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Fig. 61 (on this and the next 2 pages).  
Schematic diagrams of stages of early 
human neocortical development in 
comparison with the rest of the central 
nervous system (CNS), in a flattened 
dorsal diagrammatic view.   
A. During the first stage, at about 
GW7, the different subcortical NEP 
divisions of the CNS (red), which 
surround a series of midline  fluid 
compartments, are already flanked by 
early differentiating neurons (green).  In 
contrast, the later developing neocortical 
NEP (also red) around the paired lateral 
ventricles has no surrounding zone of 
differentiating and migrating neurons. 
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Fig 61B. In the second stage, 
at about GW8, the subcortical 
fluid compartments begin to 
shrink from the third ventricle 
to the central canal of the spinal 
cord with a corresponding 
thinning of the NEP (red) in 
these structures.  The early 
neurons of the spinal cord, 
medulla, pons, cerebellum, 
midbrain, hypothalamus, and 
thalamus are migrating and 
differentiating, expanding the 
parenchyma of these structures 
(green).  In contrast, there is 
still no zone of migrating and 
differentiating neurons around 
the neocortical and limbic 
cortical NEPs.  Instead, the 
NEP in the cortical areas of the 
forebrain continues to grow and 
surround the expanding lateral 
ventricles. 

Fig. 61C. In the third stage, 
at about GW9, differentiating 
neurons have left the NEP of 
the paired lateral ventricles in 
large numbers to form, in this 
plane of sectioning, the cortical 
plate of the medial limbic 
cortex and the lateral neocortex.  
There are many fiber bundles in 
the deep white matter below the 
cortical plate, and many fibers 
are crossing the midline in the 
corpus callosum.  
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the large and highly foliated cerebral cortex is obvious: more neurons and interconnections provide 
humans not only with greater information processing power and storage capacity but also with a 
large reservoir of spare neurons.  These uncommitted neurons can be recruited to mediate novel 
behavioral and mental functions, such as linguistic communication, tool fabrication, reading and 
writing, and, more generally, the complex demands of becoming members of a civilized society.  
However, the immense enlargement of the human neocortex has produced the vital problem how 
to allow a fetus with such a large brain to pass through the birth canal.  The evolutionary solution 
has been to delay much neocortical maturation until after birth and to package the neocortical gray 
matter and white matter as compactly as possible within the protective braincase.  

The Time Course of Early Telencephalic NEP Development.  NEP closure in the human fetus is 
completed before GW4 (O’Rahilly and Müller, 1987;1994; Bayer and Altman, 2002-2008) but 
the paired telencephalic NEP that will envelope the lateral ventricles is absent in the GW4, GW5 
and GW6 fetuses (Figs. 5, 6).  The bicameral telencephalic NEP, divided by the interhemispheric 
fissure, forms during GW7 as two evaginations from the unicameral prosencephalon (Fig. 7).  By 
the end of GW7, two telencephalic NEP regions can be distinguished: the alar or roof division 
dorsally and the basal or floor division ventrally.  The boundary of the dorsal and ventral divisions 
of the telencephalic NEP is indicated in the GW8 fetus (Fig. 8H), and is clearly delineated in the 
GW9 fetuses by the wedge that we refer to as the alar-basal junction (Figs. 9B, 9C, 10C).  Very few 
differentiating cells are seen during this period outside the expanding NEP dorsally (Figs. 17A and 
17B), but differentiating cells are accumulating ventrally in the primordium of the basal ganglia, 
signaling the onset of neuronal differentiation (Fig. 7F).  Differentiating cells are still scarce in the 
roof division by GW8, but cells surrounding the NEP of the floor division have increased greatly 
in the ventral telencephalon (Fig. 8).

By GW9, two components may be distinguished in the dorsal telencephalic NEP: the continuous 
dome-like thicker lateral one, and the discontinuous thinner midline one, which is separated into 
a dorsal and ventral component by non-neural tissue that will produce the choroid plexus. The 
continuous lateral NEP consists of the proliferative precursor cells of neocortical neurons that by 
this age begin to migrate outward to form a thin but compact layer composed of young neurons, 
known as the cortical plate (Figs. 9-11, 62).  The discontinuous medial NEP contains precursor 
cells that will become (i) neurons of the limbic system, such as the septum and the hippocampus; 
(ii) a bridge that will form the choroid plexus; and (iii) a ventral component that will give rise to 
such ganglionic structures as the amygdala.  On the basis of the histological evidence presented, 
we conclude that between GW7 and GW8—for about two weeks during the first trimester—
neocortical development consists mainly of increasing the stock of the proliferating precursors of 
neurons and other neural elements in the greatly expanding neocortical NEP, with minimal or no 
concurrent neuronal production.  From GW9 on, new neurons migrate to the cortical plate as it 
slowly thickens, with a gradient from lateral to dorsal, and central to frontal, during the following 
weeks (Figs. 13, 14, 15).

Fig. 62.  Stages in the early development of the dorsal neocortex in relation to the basal telencephalon, shown in a 
schematic lateral view.  A.  By about GW7, the NEP (red) of the basal telencephalon is surrounded by differentiating 
neurons (green) but the dorsal telencephalic NEP, the primordium of the neocortex, consists only of proliferative 
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neurons in the neocortex.  C. By GW9, a contingent of migrating young neurons have begun to form the cortical 
plate, the primordium of the cortical gray matter, which is separated from the NEP by the formative white matter.
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The Role of the Embryonic Meninges and the Hypertrophied Choroid Plexus.  The nuclei of 
proliferative NEP cells have to shuttle to the shoreline of the ventricular fluid space to undergo 
mitotic division (Fig. 17).  The size of any neuronal population is dependent on the size of that 
shoreline occupied by its precursors and their endurance over time.  The immense number of 
neurons in the human neocortex can be directly attributed to the enormous volume of the embryonic 
human lateral ventricles surrounded by the neocortical NEP and their endurance through the 
first and second trimesters, before the ventricles begin to shrink and in some regions disappear 
altogether.  The expansion and maintenance of that large ventricular space requires the production 
of cerebrospinal fluid with adequate pressure, and that appears to be initially dependent, before the 
vascular system develops (Padget, 1957), on the greatly enlarged meninges and the hypertrophied 
choroid plexus (Fig. 63).  Both of these structures differ during the embryonic period from what 
they become later during the fetal period.  Little is known of the properties of the hypertrophied, 
fluid-filled embryonic meninges (Sturrock, 1990; Kamiryo et al., 1990).  It is notable that the 
embryonic choroid plexus has a cell-sparse and spongy morphology (Fig. 63D), while the fetal and 
mature choroid plexus is a distinctive frond-like tissue, composed of a monolayer of cuboidal cells 
that surround a capillary core.  It is known from studies in animals that the early choroid plexus 
contains glycogen granules, suggesting a role in energy metabolism (Tennyson and Pappas, 1964; 
Dohrmann, 1970; Dziegielewska et al, 2001; Saunders et al., 2015), and there is evidence that it 
contains factors that promote NEP cell proliferation (Gato et al., 2005; Johansson et al., 2005; 
Martin et al., 2006; Parada et al., 2006; Mashayekhi and Salehi, 2006; Lehtinen et al., 2011). 

Aspects of Early Neocortical NEP Development.  The first step in the prolonged process of human 
neocortical development, antedating the differentiation of neurons, is the generation of a large 
population of self-replicating precursor cells by a dedicated germinal matrix, the NEP.  In the 
histological specimens that we have examined, the NEP cells of the neocortex look uniform.  
But considering the fact that these precursors cells will generate not only neurons, and different 
classes of neurons, but also other neural elements, such as cells of the choroid plexus, astroglia 
cells, oligondendrocyes, and ultimately ependymal cells, the question is: are these NEP cells 
“indifferent” pluripotent cells whose differentiation is due to extrinsic influences at a later stage 
of development or are they already “specified” before leaving the NEP?  Our normative material 
cannot answer this question.  But emerging evidence from genetic studies, mostly carried out in 
mutant or “knockout” mice, indicate that the neocortical NEP itself contains different types of 
precursor cells whose fate is already specified by intrinsic factors before leaving the NEP.  The 
histological evidence indicates that some NEP cells undergo symmetrical division within the NEP, 
parallel to the lining of the ventricle, giving rise to two progeny with mitotic potential, while other 
cells undergo asymmetric division, cleaving at a right angle to the ventricular lining and giving 
rise to one stock-building progeny, which stays in the NEP, and another that is ready to leave 
the NEP (e.g., Bayer and Altman, 1991).  The exiting cells may have different fates: determined 
to differentiate as a postmitotic neuron, or as a neural precursor cell that moves to a secondary 
germinal matrix (such as the subventricular zone), or a particular type of glia cell.  

We assume that initially the majority of NEP cells undergo symmetrical division to build the stock 
of neural precursor cells but later more and more of them undergo asymmetrical division.  The 
Fig. 63.  The expansion of the developing telencephalon and the formation of the cortical plate are associated 
with the development of the choroid plexus, as seen in sagittal sections.  A.  The choroid plexus is absent in this 
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progression of cortical NEP cells from symmetrical to asymmetrical division has been attributed 
to the influence of Pax6, a transcription factor that regulates the development of the eye, nostrils, 
and the CNS (Estivill-Torrus et al., 2002; Quinn et al., 2007; Walcher et al., 2013).  Pax6 plays a 
role in the interkinetic nuclear shuttling of NEP cells (Tamai et al., 2007).  Decreasing Pax6 levels 
facilitates precursor cell self-renewal; increasing Pax6 levels facilitates neurogenesis (Sansom et 
al., 2009).  Pax6 also plays a role in the dorsoventral patterning of the mouse telencephalon by 
persisting in the dorsal telencephalic NEP that produces neocortical neurons and disappearing in 
the ventral telencephalic NEP that generates basal ganglia neurons (Stoykova et al., 2000).  Studies 
indicate that Pax6 interacts with other transcription factors, such as Gsh2 (Torreson et al., 2000; 
Yun et al., 2001), Tbr2 and Tbr1 (Englund et al., 2005), Neurog 2, Asc1 and Hes 1 (Sansom et al., 
2009), and Emx1 and Emx2 (Bishop et al, 2003), and that, together with the BAF transcription 
factors, Pax6 directs the development of neuronal rather than glial differentiation (Ninkovic et al., 
2013).  However, complicating this picture, it has been reported that that Pax6 is expressed by the 
prosencephalic neural plate of mice before it folds and fuses (Inoue et al., 2000), that is, before the 
telencepalon forms, and that Pax6, Tbr2 and Tbr1 are expressed not only by progenitor cells but 
also by postmitotic neurons in the developing neocortex (Englund et al., 2005).  

In humans, Pax6 is uniformly expressed by NEP cells in early fetuses and in neural cells developing 
in vitro (Zhang et al., 2010).  According to the same study, overexpression of Pax6 in vitro turns 
pluripotent NEP cells into a committed neuronal lineage and the cells form rosettes as they settle.  
This happens during the early phase of development; at a later phase, another transcription factor, 
Sox 1, is expressed.  An interesting observation is that the expression of Pax6 is more pronounced 
and protracted in monkeys and humans than in mice, which may be a mechanism for assembling a 
much larger stock of precursor cells prior to their differentiation (Zhang et al., 2010).  Finally, loss 
of Pax6 results in microcephaly and the loss of late-generated, upper layer cortical neurons (Quinn 
et al., 2007).  Several gene mutations have been linked to microcephaly.  One of them, MCPH1, 
encodes the protein microcephalin (Woods et al., 2005; Pulvers et al., 2015).  In MCPH1 knockout 
mice, the proportion of asymmetric divisions of NEP cells is reduced and the mice become 
microcephalic.  Proliferating precursors of neurons are extremely radiosensitive and microcephaly 
was reported to be the only proven malformation in children born to mothers who were near the 
epicenter of the nuclear bomb explosions in Hiroshima and Nagasaki (Plummer, 1952; Yamazaki, 
1954; Miller and Blot, 1972).   

From Neocortical NEP Uniformity to Heterogeneity.  During its early development, the 
embryonic human CNS consists of a continuous sheet of NEP cells along the entire length of 
the neuraxis from rostral to caudal (Figs. 61, 62, 63).  There is no obvious discontinuity in that 
germinal matrix in relation to the different divisions of the CNS, such as the mesencephalon, 
diencephalon or telencephalon, or in relation to the different future components of these divisions, 
such as the thalamus, subthalamus or hypothalamus.  But as development proceeds, two kinds 
of regional differences emerge: one is the transient appearance of protuberances, invaginations 
and evaginations, foci of high rate of NEP cell proliferation that produce a variegated ventricular 
shoreline; the other is the subsequent thinning and eventual disappearance of the NEP at sites where 
precursor cell production slows down or ceases altogether.  Most conspicuous of the former are 
the transient rhombomeres in the medulla, which are targets of fibers of the different cranial nerve 
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ganglia (Bayer and Altman, 2002-2008), and the transient evaginations and invaginations along 
the third ventricle, which are sources of the neurons destined to form the different components 
(nuclei) of the thalamus and hypothalamus (Altman and Bayer, 1988).  We have suggested that 
these transient proliferative foci reflect NEP “mosaicism,” regional differences in the rate of cell 
division in relation to the precise timetable in the production of different classes of neurons along 
the neuraxis (Bayer et al., 1993).    

In sharp contrast to the subcortical regions manifesting visible NEP mosaicism, the early neocortical 
NEP and the the cortical plate, appear to be uniform throughout, with no visible indications of 
cellular differences in relation to the later developing different lobes and of areal differences 
within the lobes.  Does that mean that unlike the “specified” NEP of most subcortical structures 
that display mosaicism, the entire neocortical NEP is initially “plastic?”  If so, the neocortical 
NEP would have to become specified at a later stage, perhaps some time after the arrival of the 
visual, somatosensory and auditory radiation fibers from the thalamus.  But if so, what signaling 
mechanisms make visual system fibers target the occipital lobe and create a retinotopic map there; 
what makes somatosensory fibers target the paracentral lobe and create a somatotopic map there; 
and what makes auditory system fibers target the temporal lobe and create a cochleotopic map 
there?  Instructive in this regard is the evidence that optic fibers from the lateral geniculate nucleus 
do not initially grow in the direction of the occipital lobe but, rather, first grow anteriorly and 
then, taking a detour around the caudate nucleus, turn around (known as Meyer’s loop) and grow 
caudally in the direction of the occipital lobe (Fig. 16).  The simplest explanation would be that the 
occipital lobe neurons do possess some specificity and emanate signals to attract optic fibers but 
repel fibers of other sensory modalities.  

Formation of the Fronto-Temporal Cleavage.  A morphogenetic change that begins early in the 
development of the neocortex, and appears anomalous, is its change from its regular ovoid shape 
by assuming a folded crescent form as the result of the formation of the fronto-temporal dimple 
(Fig. 13A) that later turns into the fronto-temporal cleavage.  We cannot attribute any functional 
utility to this change from the perspective of cortical organization because that chasm hinders 
rather than facilitates communication between the frontal and the temporal cortices as the circuitry 
of the cortex develops.  However, we can offer a two-stage developmental interpretation. As seen in 
sagittal sections, the expanding neocortical NEP retains its smooth, dome-like configuration in the 
GW7 (Fig. 63A), GW8 (Fig. 63B) and most GW9 embryos (Figs. 9, 10), but a dimple appears at the 
base of the neocortical surface by about GW10 and GW11 (Fig. 13), and turns into a cleavage by 
the end of the first trimester and early in the second trimester (Fig. 19).  That dimple is apparently 
produced by pressure exerted by the hypertrophied meninges of the developing neocortex—in 
particular, the hypertrophied superarachnoid reticulum that we have described earlier. That dimple 
widens and deepens in the subsequent months of cortical development, as the vascular system 
develops, as seen in lateral views of the brains of an early 4 months-old fetus (Fig. 64A), a late 
4 months-old fetus (Fig. 64B), and 5 months-old fetus (Fig. 64C).  As a result, the convex lateral 
surface of the neocortex splits into two parts, with the fronto-temporal cleavage separating the pole 
of the temporal cortex from the rear of the frontal cortex.  That cleavage comes to serve as the entry 
sites for the elaborate branches of the medially situated arteries that supply with oxygenated blood 
the expanding gray matter of the lateral neocortical convexity (Fig. 65A).
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The gray matter of the expanding neocortex is supplied with oxygenated blood by three medially 
situated large vessels: the ascending basilar artery, which branches into the paired posterior 
cerebral arteries; the paired internal carotid arteries, which form the middle cerebral arteries; and 
the paired anterior cerebral arteries (Fig. 65B).  (Communicating arteries that form the circle of 
Willis interconnect these three systems.)  As seen from the base of a mature brain, the branches of 
the posterior cerebral arteries vascularize the convexity of the posterior neocortex, including the 
occipital lobe (Fig. 65C).  As seen in a sagittally transected brain, branches of the anterior cerebral 
artery vascularize the midline cortex (Fig. 65E).  And as seen in a coronally transected brain (Fig. 

DEVELOPMENT OF THE FRONTAL-TEMPORAL CLEAVAGE (LATERAL SULCUS)
SAGITTAL VIEWS VENTRAL VIEWS

A

B 

C

Frontal-temporal cleavage
is a wide indentation

Frontal-temporal
cleavage

Frontal-temporal
cleavage

Frontal-temporal
cleavage

Frontal-temporal
cleavage

Frontal-temporal cleavage
extends posterodorsally

Orbito-frontal cortex

Orbito-
frontal
cortex

Orbito-frontal cortex

Orbito-frontal cortex

Orbito-frontal cortex

Orbito-frontal
cortex

Orbito-frontal
cortex

Temporal cortex

Temporal
cortex

Temporal
cortex

Temporal cortexTemporal cortex

Temporal cortex

Temporal cortex

Temporal cortexTemporal cortex

Cerebellum
and brainstem

Cerebellum
and brainstem

Cerebellum
and brainstem

Cerebellum
and brainstem

Occipital cortexOccipital cortex

Occipital cortex

Occipital cortex

Occipital cortexOccipital cortex

Occipital cortex

Occipital cortexOccipital cortex

Parietal cortexParietal cortex

Parietal cortex

Parietal cortexParietal cortex

Frontal
cortex

Frontal
cortex

Frontal
cortex

Frontal cortexFrontal cortex

InsulaInsula

InsulaInsula
OperculumOperculum

Olfactory tract

Olfactory tractOlfactory tract

Olfactory tractOlfactory tract

Olfactory tract

Olfactory tractOlfactory tract

Early 4th prenatal month

Late 4th prenatal month

5th prenatal month

Frontal-temporal cleavage
broadens to as the insula 
grows

Frontal-temporal cleavage
broadens to as the insula 
grows

Fig. 64. 
Expansion of the 
fronto-temporal cleavage 
in the brain an early 4‑months-old, 
120 mm fetus (A); a late 4‑months-old, 180 mm 
fetus (B); and a 5‑months-old, 250 mm fetus (C).  After Retzius, 1896.



167Interpretations and Hypotheses

65D) and from its lateral aspect (Fig. 65F) the middle cerebral arteries vascularize much of the 
lateral convexity of the neocortex.  We conclude that the fronto-temporal cleavage serves as the 
gateway for the branches of the middle and anterior cerebral arteries, originating medially, over to 
the lateral convexity of the neocortex. 

THE FRONTAL-TEMPORAL CLEAVAGE AND CORTICAL VASCULARIZATION
A B

C D

E F

Middle cerebral artery 

Frontal pole
removed 

Middle
cerebral artery 

Internal
carotid
arteries

Internal carotid artery

Middle
cerebral

artery

Anterior
cerebral

artery

Middle
cerebral

artery

Anterior cerebral arteries

Vessels run
in the
Lateral
�ssure

Vessels run
in the

Lateral
�ssure

Posterior
cerebral
artery 

Posterior
cerebral

artery 

Branch of the Basilar
artery

Branch of the carotid
artery Basilar

artery 

Basilar
artery 

Vertebral
artery 

Posterior
cerebral
artery 

Posterior
communicating
artery 

Anterior cerebral artery 

Anterior
cerebral artery 

Anterior communicating artery 

Middle
cerebral
artery 

Frontal-temporal cleavage
(lateral �ssure)

Frontal-temporal
cleavage

Frontal-
temporal
cleavage

CIRCLE OF WILLISLATERAL VIEW

VENTRAL VIEW

MIDLINE SAGITTAL VIEW LATERAL SAGITTAL VIEW

CUTAWAY FRONTAL VIEW

THE FRONTAL-TEMPORAL CLEAVAGE IS A 
CONDUIT FOR MAJOR BRAIN BLOOD VESSELS.

Fig. 65.  A.  The middle cerebral artery (blue) and the midline posterior cerebral artery (red) in early second 
trimester fetuses.  Branches from the two pass from the midline laterally over the neocortical convexity by way 
of the frontal-temporal cleavage.  B. Simplified diagram of the arterial system of the mature cerebral cortex.  The 
internal carotid arteries and the basilar artery, in combination with the communicating arteries of the Circle of Willis, 
are the source of the blood supply of the anterior and posterior neocortex, respectively.  C. Ventral view of the 
branching pattern of the basilar artery and the middle cerebral artery in the mature brain.  Note the middle cerebral 
artery passes laterally above the frontal-temporal cleavage.  D.  Coronal view of the distribution of branches of 
the anterior cerebral artery.  E. The distribution of branches of the anterior cerebral artery as seen in the midline.  
F. View of the course of the middle cerebral artery as seen in a brain with the frontal lobe and the temporal lobe 
pulled apart.  Based on Retzius (1896), Padget  (1948), Jaworski, StudyBlue, Internet), and other sources.



168 Human Neocortical Development

 E.  THE SECOND STAGE OF HUMAN NEOCORTICAL DEVELOPMENT: 
NEURONAL DIFFERENTIATION, MIGRATION, AND SETTLEMENT

 
Formation of the Cortical Plate.  Neocortical neuronal differentiation and migration begins about 
GW9 as postmitotic cells exit the NEP and form a compact superficial band of young neurons, 
known as the cortical plate (Figs. 9,10, 11, 17D).  These settling neurons are the earliest components 
of the presumptive neocortical gray matter.  In younger GW9 fetuses, the cortical plate emerges 
laterally in the central portion of the neocortex (Figs. 9B, 9C); it is still absent in the future frontal 
lobe anteriorly (Fig. 9A) and in the future occipital lobe posteriorly (Fig. 9D).  In older GW9 
fetuses, the cortical plate is better developed and has become more extensive (Figs. 10, 11).  There 
is a gradient in the formation of the cortical plate, starting laterally in the presumptive paracentral/
insular region, spreading from there dorsally and ventrally, and anteriorly and posteriorly.  

In addition to the development of the cortical plate, a notable development during GW9 is the 
assembly of a unique set of horizontally-oriented neurons, the Cajal-Retzius cells, in the superficial 
fibrous layer I between the cortical plate and the pia (Fig. 17D).  It has been hypothesized that the 
earliest settled neurons in the cortical plate will form the base of the gray matter, the subplate (layer 
VII); settling neurons later come to be sandwiched between it and the superficial layer I containing 
the Cajal-Retzius cells (Marin-Padilla, 1988, 1992; Bayer and Altman, 1991).  The Cajal-Retzius 
cells are a unique class of neural elements with two features: they have a rich arbor of horizontally-
oriented fibers beneath the pia, and they secrete a glycoprotein, reelin.  Cajal-Retzius cells are 
transient elements and they have been shown in mutant rodents to be essential for the normal 
development of the cytoarchitecture of the neocortical gray matter (Caviness, 1976; Ogawa et al., 
1995; Meyer and Goffinet, 1998).  Less is known about the fate of the early cortical plate neurons 
of layer VII; early on, they delaminate from the cortical plate and form a more diffuse layer beneath 
it (Bayer and Altman, 1991).  They, too, may be structural rather than functional elements, serving 
as the scaffolding for the proper assembly of the permanent neuronal population of the laminated 
cortical gray matter that will settle above them.

Early neocortical neuronal differentiation and migration is associated with several other 
developments.  The first of these, as noted before, is the rapid expansion of the choroid plexus of the 
lateral ventricles between GW8 and GW 10 (Figs. 63B-D).  We assume that the growth of the choroid 
plexus plays a pivotal role in the great expansion and persistence of the fluid compartment of the 
human lateral ventricles, which supports the extensive and prolonged proliferation of neocortical 
NEP cells.  The second developmental phenomenon, as seen in older first trimester fetuses, is the 
hypertrophy of the meninges that encase the neocortex—the mesenchymal tissues of the dura, 
arachnoid, and pia (Figs. 14 and 16).  The enlargement of these meningeal constituents is most 
pronounced in the midrib of the neocortex, where their transient hypertrophy leads, as noted before, 
to the mid-cephalic constriction of the cerebrum (the frontal-temporal dimple and the invaginating 
insula) and the partition of the lateral ventricles into an anterior and a posterior component (Fig. 
16).  We proposed earlier that that these fluid-filled spongy tissues support neocortical development 
metabolically and hydrodynamically prior to the onset of neocortical vascularization.  But as the 
vascularization of the expanding neocortex begins (Fig. 18), that dimple turns into the widening 
frontal-temporal cleavage and is the site for branches of the medially situated cerebral arteries to 
expand over the lateral surface of the neocortex (Fig. 65). The persistence of this cleavage has 
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consequences as to how connections between the frontal and temporal lobes form, as the fibers 
have to make a detour around the chasm created, such as is the case with the uncinate fasciculus.  

The third developmental event, which starts in early GW9 fetuses and continues in older ones, is 
the sprouting of thalamocortical fibers and their ascent towards and penetration of the formative 
neocortex, and the concurrent sprouting and descent of corticofugal fibers (Figs. 12, 13 and 16).  
In the older first trimester fetuses the corticofugal axons are seen to penetrate the basal ganglia 
(Fig. 16D), giving rise to a fibrous aggregate known as the internal capsule (Figs. 15 and 16).  With 
regard to the thalamocortical fibers, one set of axons are seen to make a loop around the basal 
ganglia, these are optic fibers from the lateral geniculate nucleus growing toward the occipital lobe 
(Fig. 16E); another set of fibers appears to target the paracentral lobule (Fig. 16E).

Formation of the Stratified Transitional Field: The First Step in Areal Diversification.  Casting new 
light on the issue of neuronal differentiation and the development of neocortical areal specificity 
(what traditionally is known as “brain localization”) is the histological evidence that beginning 
towards the end of the first trimester, following the settling of the first migratory wave of early-
generated neurons from the NEP in the cortical plate (the neurons in the future subplate), a second 
migratory wave of neurons displays a different pattern of migration (Figs. 19, 20 and 21).  These 
migratory neurons will settle in layers VI to II, but they all stop (sojourn) in the intermediate zone 
between the NEP and the cortical plate and form a series of discrete cellular and fibrous bands, 
what we have called the stratified transitional field, or STF (Bayer and Altman, 1991; Altman and 
Bayer, 2002; Bayer and Altman, 2002-2008;).  The STF persists throughout the second trimester 
(Figs. 25, 26, 27, 28) but disappears by the early third trimester as the cortical plate is transformed 
into the differentiating areas of the gray matter (Fig. 30).  We postulated that this second wave of 
sojourning neocortical neurons establishes intimate relationships with incoming thalamocortical 
afferents before they penetrate the cortical plate.  Apparently, the STF is a staging area where 
different classes of sojourning cortical neurons and afferent fibers interact with one another before 
they proceed to their targets.  The implication of this hypothesis is that the areal and topographic 
specificity of differentiating neocortical neurons is a product of some sort of transaction between 
the sojourning neuron and the topographically organized ingrowing thalamocortical fibers.  Then, 
by the end of the second trimester, the STF is beginning to disappear (Fig. 28) and it is gone by 
the third trimester (Figs. 30-31).  With all the migrating and sojourning neurons settling in the 
expanded cortical gray matter, the STF is replaced by the cortical white matter.

There are notable differences in STF layering in the presumptive orbitofrontal, frontal, motor, 
somatosensory, parietal, occipital, and temporal cortical areas, and we assume that there is a direct 
relationship between banding patterns in the STF and unique lamination patterns in different 
cortical areas (Figs. 19-21, 25-27).  Much research will need to be done to establish the identity 
of the neurons forming STF2, STF3 and STF5, and to identity the fibers forming STF1, STF4 and 
STF6. The available evidence suggests the following tentative identification. The fibrous STF1 
band beneath the cortical plate, which progressively expands during the second and third trimesters, 
will evidently become the deep white matter.  The cellular STF2, which is prominent in the future 
anterior premotor and motor areas but virtually absent in the posterior visual cortex, contains the 
differentiating large pyramidal neurons of layer VI and V.  These neurons sprout long-distance 
efferent axons, including the corticofugal fibers that traverse the basal ganglia and descend to the 
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brain stem and spinal cord.  The cellular STF3, which is most prominent and elaborate in the future 
visual c  ortex but is absent in the frontal cortex, contains the layer IV neurons that will differentiate 
as granule cells and are the main target of thalamocortical afferents.  There are apparent differences 
in STF3 configuration in the different presumptive sensory projection areas and association areas of 
the neocortex.  An important STF3 feature is the multitude of minicolumns aligned at a right angle 
to the cortical surface.  That pattern suggests a topographic segregation of incoming afferents at 
this site (the “honeycomb matrix”) as presumably they establish connections with and specify the 
neurons that will later ascend and penetrate the cortical plate (Fig. 23).  The fibrous STF4, which 
is present in both the anterior and posterior cortical areas, may contain descending corticofugal 
efferents and thalamocortical afferents, respectively. The cellular STF5 may differentiate as the 
small pyramidal neurons of the supragranular layers III and II.  Finally, STF6 appears to contain 
the fibers of the corpus callosum.  Once all the neurons of the cellular bands have migrated to the 
cortical plate, the fibrous bands become part of the expanding white matter.

Neuronal Migration and Axonogenesis.  To reach their targets, the early corticofugal and corticopetal 
axons must navigate through different regions as exemplified, for instance, by the visual fibers 
that first grow rostrally toward the internal capsule, then turn caudally to approach the occipital 
lobe (Fig. 16E).  However, we have practically no information available in the developing human 
neocortex regarding how afferent axons are guided towards specific cortical targets.  Experimental 
studies carried out mostly in rodents suggest that growth cones and filopodia of axons respond 
to diffusible molecular guidance signals by moving forward, retracting or changing direction.  
Among these navigational signals are netrins (Métin et al., 1997), ephrins (Castellani et al., 1998; 
Mann et al., 2002; Dufour et al., 2003; Bolz et al., 2004), N-cadherin (Huntley and Benson, 1999; 
Poskanzer et al., 2003), Tbr1 and Gbx2 (Hevner et al., 2002), Fez  (Chen et al., 2005; Molyneaux et 
al., 2005; Kwan et al., 2012; de la Rosa et al., 2013), and semaphorins (Pasterkamp, 2012).  Axon 
branching and arborization at particular target locations by budding filopodia has been associated 
with neurotrophins, such as fibroblast and nerve growth factors (Gallo and Letourneau, 2000; 
Szebenyi et al., 2001; Kalil and Dent, 2014).  

F.  THE THIRD STAGE OF HUMAN NEOCORTICAL DEVELOPMENT: 
AREAL DIFFERENTIATION AND PROGRESSIVE GYRIFICATION 

Areal Differentiation of the Neocortical Gray Matter.  As seen in the sagittal plane in the GW7 
(Fig. 7A) and GW8 (Fig. 8D) fetuses, the cortical plate is relatively uniform in terms of its cell 
packing density and depth.  The same uniformity is suggested in the coronally and horizontally 
sectioned brains of GW9 embryos (Figs. 9D, 10B).  That uniformity persists into the early second 
trimester, as shown in a GW14 embryo (Fig. 19A-D).  However, by the mid-second trimester, as 
seen in a GW20 embryo (Figs. 20A-D, 22), the thickness of the cortical plate begins to differ from 
anterior to posterior, in parallel with differences in the organization of the STF in the two regions.  
And in the GW23 fetus, a difference is also becoming evident in the lamination pattern of the 
frontal, paracentral, and posterior cortical plates (Fig. 28).  As development proceeds, the relatively 
homogeneous neocortical plate is transformed into the neocortical gray matter, a composite tissue 
of neuronal cell bodies, dendrites, and axon terminal branches.  The human neocortex features 
many different areas, each having a unique organization of cells and fibers (cytoarchitectonics) 
different connections, and different functions.
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That areal differentiation of the neocortical gray matter is a gradual and prolonged process.  For 
instance, there is little difference in the cell-packing density and cell-depth of the presumptive 
motor and visual cortices in a 4‑months-old fetus (Fig. 32).  In 5‑months-old fetuses differences 
emerge between the two regions: cell-packing density and cell depth are lower in the visual cortex 
than in the motor cortex (Figs. 33, 34A,C).  In the visual cortex, the development of gray matter 
lamination is associated with the dissolution of the STF (compare Figs. 34A and 34B).  The 
sojourning neurons have resumed their migration and became aligned in the gray matter as vertical 
minicolumns separated from each other by vertical fiber bands (Fig. 35).  By the 7th fetal month, 
areal differences are also marked throughout the neocortex by differences in the predominance 
of different types of neurons in the horizontal layers of the frontal lobe, the premotor and motor 
cortices, the parietal lobe, and the occipital lobe (Fig. 36).  By the time of birth, the cellular 
lamination pattern of different cortical areas is similar to that seen in the maturing postnatal 
neocortex (Fig. 37).  The presumed outcome of this neocortical areal differentiation is that by birth 
the projection areas receive detailed somatotopic, retinotopic and cochleotopic information about 
features and changes in the outside world. 

The Phenomenon of Neocortical Gyrification: Formation of Lobules and Sublobules.  In the first 
trimester embryo, the neocortex has a smooth surface (Figs. 7, 9, 15, 16) but during the second 
trimester, the neocortex begins to fold, forming gyri and sulci (Figs. 19E-F, 25, 26, 27, 28).   This 
change begins as the white matter composed of the growing afferent, efferent, and commissural 
fibers begins to expand in 4‑months-old fetuses, concurrently with shrinkage of the fluid space in 
the lateral ventricles (Figs. 66B, C).  The first site of that gyrification takes place in the occipital 
lobe, where the parieto-occipial and calcarine fissures begin to form (Fig. 66B).  (See also the onset 
of calcarine fissure formation in Fig, 19E, F.)  These two fissures have become deeper in 5 months-
old fetuses, as a result of which the occipital lobe becomes separated from the parietal lobe, and the 
calcarine fissure divides the occipital lobe into two primary gyri, the dorsal cuneus and the ventral 
lingula (Fig. 66C).

progressive gyrification.  We have followed the onset of gyrification in the rest of the neocortex in 
the sagittal plane in a young 6 months-old fetus (Fig. 26), and the ongoing subsequent gyrification by 
comparing the neocortex of a 5‑months-old fetus with that of a 7‑months-old fetus in the horizontal 
plane (Fig. 28).  Fig. 67 illustrates progressive neocortical gyrification in three fetuses aged GW24, 
GW29, and G34 at matched coronal levels.  The comparison suggests that increased gyrification is 
associated with four ongoing morphogenetic processes: (i) a reduced NEP around (ii) a shrinking 
lateral ventricle; (iii)  expansion of the white matter; and (iv)  expansion of the surface area of 
the cortical plate.  NEP reduction signals the diminution and ultimate cessation of neocortical 
neurogenesis.  Henceforth, differentiated ependymal cells will line the shrunken lateral ventricle.  
The expansion of the white matter is attributable to increasing numbers of afferent axons, the 
immense growth in the number and lengths of axons and collaterals of the differentiating cortical 
neurons, such as long-distance and short-distance association fibers, and commissural fibers of 
the corpus callosum.  Finally, the expansion of the surface area of the neocortex is associated 
with the disappearance of the stratified transitional field, as the sojourning neurons resume their 
migration and settle in the cortical plate.  The settled neurons, particularly pyramidal cells, grow 
laterally spreading dendrites causing a widening of the neuropil between the cellular minicolumns.  
Significantly, the great expansion of the gray matter and the white matter is associated with 



172 Human Neocortical Development

increased gyrification.  Instead of ballooning, the cortical gray matter gets distributed over the 
increasing number of buds, swellings and branches of the partitioning white matter.  As a result, 
a high proportion of the neurons of the cortical gray matter become distributed along the banks 
(sulci) of the lobules and sublobules formed (Fig. 67C).
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Fig. 66.  The beginning of neocortical gyrification, illustrated in matched sagittal brain sections.  A. In this GW10, 
40 mm embryo (C6658), the neocortical NEP and the formative cortical plate that surrounds the expanded lateral 
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the distinction between lobes, lobules, and sublobules.  The conventional division of the 
mature human cerebral cortex into lobes—frontal, parietal, occipital and temporal—has a long 
history, even though the boundaries of some of these lobes are uncertain or arbitrary.  Thus the 
posterior boundary of the frontal lobe is problematic, with some authorities including in it the 
frontal eye field and the premotor cortex.  Similarly, while the posterior boundary of the parietal 
lobe with the occipital lobe is well delineated by the parieto-occipital fissure, its boundaries with 
the temporal cortex are uncertain.  The same applies to the uncertain boundaries between the 
occipital lobe and the temporal lobe.  In contrast, because the precentral gyri and the postcentral 
gyri are easy to delineate both morphologically and physiologically, and the two are related as the 
primary somatomotor and somatosensory projection areas, some authorities designate them as the 
“paracentral lobe.”  Similarly, while the  delineation of some of the lobules—such as the superior, 
middle and inferior temporal gyri—is relatively easy, subdivision of lobules in other regions, such 
as the frontal lobe, is problematic.  The difficulty with these delineations is mostly due to the 
increased gyrification during development, as lobes become subdivided into lobules.  Besides 
that, there are many individual differences in the pattern of ongoing higher-order gyrification.  The 
ontogenetic approach we take here, and supplement below with a phylogenetic approach, is useful 
because it allows us to follow the gradual elaboration of primary lobes into higher order lobules 
and sublobules, making the basic gyral pattern difficult to discern in the mature human neocortex.   

On the facing page is a list of annotated illustrations on the next 4 pages that show progressive 
gyrification.  We first summarize the process in the human neocortex with illustrations selected 
from Retzius’ (1896) monograph showing specimens in the second trimester of fetal life up to 
birth, in lateral and medial views (Fig. 69, left and right columns).  We next follow the continuing 
gyrification of the neocortex in infants and children by illustrations taken from Conel’s books 
(1939-1967).  In the lateral view of a 5‑months-old fetus, the surface of the cortex is smooth, 
with the exception of the fronto-temporal cleavage.  In the medial view, the commencement of 
gyrification is indicated by the formation of the calcarine fissure in the occipital lobe and the onset 
of the formation of the parieto-occipital fissure (Fig. 68A, right).  These primary fissures of the 
visual cortex expand in the older 6- and 7‑months old fetuses, with the result that the occipital lobe 
becomes partitioned into the cuneus and lingula, or dorsal and ventral occipital lobules (Figs. 68B, 
C, D, E, right).  Then, in the 8- and 9‑months-old fetal brains the lobules become partitioned into 
higher older sublobules (Fig. 68F, G).  The partitioning of lobules into higher order sublobules 
continues postnatally, together with an expansion of the sublobules in the growing neocortex, as 
seen in specimens aged from 6 months to six years (Fig. 69).  As a consequence of sublobulation, 
the boundaries of many lobules become less and less distinct.
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ANNOTATED ILLUSTRATIONS OF PROGRESSIVE 
GYRIFICATION DURING HUMAN BRAIN 

DEVELOPMENT

SUBJECT PAGE(S)
Figure 68A: 5 prenatal months lateral and medial views 176 

Figure 68B: Middle prenatal 6 months lateral and medial views 176

Figure 68C: Late prenatal 6 months lateral and medial views 176 

Figure 68D: Early prenatal 7 months lateral and medial views 176

Figure 68E: Late prenatal 7 months lateral and medial views 177

Figure 68F: 8 prenatal months lateral and medial views 177

Figure 68G: 9 prenatal months lateral and medial views 177

Figure 69A: 6 postnatal months lateral view 178

Figure 69B: 15 postnatal months lateral view 178

Figure 69C: 2nd postnatal year lateral view 179

Figure 69D: 6th postnatal year lateral view 179
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Fig. 68 (on facing pages).  Prenatal gyrification of the neocortex, as seen in selected photomicrographs of the brain 
ranging in fetal age from 5 months (A) to 9 months (G).  From Retzius’ Das Menschenhirn (1896).  Lateral view 
on the left; medial view on the right. See text for the distinction between the early formation of smooth primary 
lobules in some regions and the later formation of secondary sublobules.  Color coding of the presumptive lobes is 
inferential.  Dorsal frontal lobe, yellow; precentral lobule, green; postcentral lobule, orange; temporal lobe, pink; 
occipital lobe, blue.  The orbitofrontal area, insula, parietal lobe, and cingulate gyrus are not colored. 
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the phylogeny of lobulation.  Progressive lobulation—starting with a smooth surfaced neocortex, 
followed by the formation of primary lobules, and ending with the formation of higher order 
sublobules—has its parallel in mammalian phylogeny (Figs. 70-74).  For instance, paleoneurological 
evidence has been obtained that the neocortex has not only become greatly enlarged but also more 
convoluted in the evolution of Equidae from the small four-toed, ancient browser Eohippus to 
the large one-toed, grazing modern Equus (Edinger, 1948).  Because the width the pelvic girdle 
is limited by the requirement that the hind limbs be close together for rapid locomotion, there 
was evolutionary pressure to package the enlarged brains of large-bodied animals as compactly 
as possible so that the head of the newborn can pass through the narrow birth canal. We illustrate 
that relationship between body and brain size and increased gyrification in two felines, the small 
domestic cat and the large lion (Fig. 70).

Progressive gyrification is more pronounced in the ascending line of primates than in other 
mammalian orders.  We illustrate that by comparing the neocortex in several species of prosimians 
(Fig. 71), monkeys (Fig. 72), and a chimpanzee and human (Fig. 73).   The neocortex of a very small 
prosimian, the tarsier, is virtually without fissures (Fig. 71A).  The small bushbaby has a lateral 
fissure, which separates the smooth-surfaced frontal lobe from the smooth-surfaced temporal lobe 
(Fig. 71B).  In the larger greater galago, a fissure separates the temporal lobe into two lobules 
(Fig. 71C), and that fissure is better developed in the much larger ring-tailed lemur (Fig. 71D).  
Lobulation is also evident in the frontal lobe but not in the occipital lobe.  There is little indication 
of the formation of sublobules   Among monkeys, the small marmoset, the lateral fissure separates 
the frontal lobe from the neocortex, and an incipient fissure is present in the temporal lobe (Fig. 
72A).  In the larger squirrel monkey (Fig. 72B) the temporal lobe is divided into lobules, and 
howler monkey into three (Fig. 72C).  Gyrification is quite advanced in the spider monkey (Fig. 
72 D) and the large guinea baboon (Fig. 72 E) with the presence of some sublobules.  Lobule and 
subslobue formation is more advanced in the hominid ape, the chimpanzee (Fig. 73A) and reaches 
its peak in humans (Fig. 73B).  It has been reported that the surface area of the human neocortex is 
nearly three times as large as it would be in the absence of convolutions (Van Essen, 1997).

The increase in neocortical gyrification in the ascending scale of prosimians, monkeys, ape, and 
man is attributable to a great increase in the white matter of the cerebrum and the expansion of the 
surface area of the cortical gray matter.  This is illustrated in histological sections of the frontal 
lobe in the squirrel monkey (Fig. 74A), the rhesus monkey (Fig. 74B), the mandrill (Fig. 74C), the 
chimpanzee (Fig. 74D), and man (Fig. 74E).  Inspection of these sections suggests two features 
that underlie this progressive gyrification.  The one is the branching or partitioning of the smooth 
surfaced white matter, seen in the squirrel monkey, into an increasing number of protruding fiber 
branches in larger primates; the other is the crowning of these branches by cortical gray matter 
with a similar width.  We will return later to these two features in our attempt to explain the 
mechanisms underlying cortical gyrification.

The Functional Necessity of Increased Gyrification.  Mammals with a large neocortex have a 
selective advantage over those with a smaller neocortex because they have more neurons with 
synapses (processing units) in their gray matter to process information that is conveyed by more fibers 
(transmission lines) in their expanded white matter.  Previously we have argued that gyrification in 
animals with a large neocortex is a reproductive necessity because that prevents enlargement of the 
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Fig. 70.  Matched coronal sections of the brain in the small domestic cat (A) and the big African lion (B), illustrating 
the great increase in the number and depth of the gyri in the larger neocortex of the latter.  Dots highlight the well-
developed gyri.  (Photomicrographs from the collection of the BrainMuseum.org)
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Fig. 71.  The smooth-surfaced neocortex of Tarsius 
syrichta (A) and Galago senegalensis (B), and the 
lobulated neocortex of Otolemur crassicaudatus (C) 
and Lemur catta (D), in lateral view.  A correlation is 
indicated between body weight (in grams) and degree 
of gyrification.  (Photographs from the collection of the 
BrainMuseum.org) Fig. 72.  Increase in gyrification in five monkey species 

with increasing body weight: Callithrix jacchus (A), 
Saimiri sciureus (B), Alouatta palliate (C), Ateles 
geoffroyi (D) and Papio papio (E).  (Photographs from 
the collection of the BrainMuseum.org)
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Fig. 73.  The great increase in the size of the neocortex and its 
gyrification in chimpanzee (A) and man (B).  (Photographs from 
the collection of the BrainMuseum.org)
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Fig. 74 (on facing pages).  Coronal sections of the frontal lobe in squirrel monkey (A), rhesus monkey (B), 
mandrill (C), chimpanzee (D), and human (E).  The progressive gyrification is associated with increased branching 
(partitioning) of the flat core of the white matter and of the cortical gray forming a shell around these protrusions.  
The increased number of gyri formed are indicated by red dots.  (Photomicrographs from the collection of the 
BrainMuseum.org.) 
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head by the time of delivery to such an extent that the neonate cannot pass through the birth canal.  
Here we shall argue that the formation of neocortical lobules and sublobules through gyrification 
is also of great functional significance.  

The task of the central nervous system is to process salient sensory information and generate 
a behavioral response to that stimulus that is as rapid and effective as possible.  Information 
processing can be simple or complex, stereotyped or discriminative.  Evidently, simple stimulus 
processing requires fewer neurons and brain circuits than does complex processing.  The function 
of the neocortex of mammals is to produce responses to stimuli that are based not on simple, 
readymade mechanisms but on tailor-made learning and cognition-based processing mechanisms.  
However, increased processing creates the problem of making the reaction time to a stimulus 
become so protracted that the response fails to benefit the organism.  That problem is due to 
the fact that nerve impulse propagation and chemical transmission across synapses are extremely 
slow processes when compared with the speed of signal transmission in inanimate systems by 
conducting wires or wirelessly by electromagnetic radiation.  That slowness of sensory-motor 
processing is exacerbated once distances between different brain areas increase as the brain becomes 
larger, and as processing becomes dependent on more and more brain regions.  As the neocortex 
has expanded  in mammalian phylogeny, two trends evolved to deal with these predicaments: 
(i) Neurons performing related functions settle close together in integrated wiring circuits that are 
topographically organized maps (retinotopic, somatotopic, cochleotopic) of the sensory system 
in lobules and sublobules.  (ii) More and more stations are created that parallel process different 
features of the available information.  The ontogeny of lobulation in the human neocortex reflects 
that phylogeny, as seen in the gyrification of the occipital lobe.

lobulation in the occipital lobe.  The presumptive occipital NEP and cortical plate is smooth 
in the GW10 embryo (Fig 66A).  At this age there is as yet no evidence for visual radiation 
fibers growing from the thalamus towards the neocortex.  That growth begins about the end of the 
first trimester when a small complement of fibers leaves the lateral geniculate nucleus, enters the 
internal capsule, loops around the basal ganglia and turns posteriorly (Fig. 16E).  The occipital 
lobe still has a smooth surface for several weeks, but then, in combination with the formation 
of the stratified transitional field, two small cleavages appear in the cortex of a GW18 fetus, the 
parieto-occipital fissure and the calcarine fissure (Fig. 66B).  Both fissures are greatly enlarged in 
the GW20 fetus (Fig. 66C), which leads to the partitioning of the occipital lobe into two lobules, 
the cuneus and the lingula.  As we illustrated earlier in a GW23 fetus (Figs. 26 and 27), this 
partitioning of the occipital lobe by the calcarine fissure begins with the arrival of visual radiation 
fibers and continues in fetuses ranging in age from 5 to 9 months.  It is about the time of birth that 
sublobules begin to form in the cuneus and lingula (Fig. 68F,G) and that lobulation continues at 
a modest rate in infants and young children (Fig. 69).  What is the functional significance of this 
partitioning?  We offer here an evolutionary explanation, which postulates that the visual cortex 
has two separate functions in primates and anthropoids.

the two visual functions of the occipital lobe.  The function of the laterally situated eyes in 
lower vertebrates is vigilance, orientation and navigation.  Lateral eyes scan the visual field (the 
horizon) for friend or foe, explore the environment to discriminate among objects and events 
that are beneficial or harmful, and construct route maps to locate feeding sites, escape avenues 
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and migratory routes.  The principal central nervous mechanism that coordinates these visual 
functions in lower vertebrates lacking a neocortex is the midbrain tectum.  In mammals with 
medially placed eyes and dexterous fingers, such as monkeys and apes, vision has an additional 
function, that of palpation and manipulation, using hand-eye coordination.  Sight directed towards 
the upper visual field retains the function of vigilance and exploration of the environment.  But 
sight directed towards lower visual field is used to closely inspect the properties of objects.  That 
visual information aids in coordinating arm reaching, hand grasping, and fingers palpating and 
manipulating objects.  During such object inspection, the individual tends to be stationary in its 
personal space.  In contrast, exploration of the surrounding environment involves turning the entire 
body in a particular direction, to climb, run, or jump from one place to another.  Both functions 
involve perception, attention and action, but one is self-centered or egocentric, the other world-
directed or allocentric.  In higher primates different lobules of the striate cortex regulate these 
two functions.  As illustrated in the monkey brain, the lower visual field is mapped in the cuneus, 
the dorsal occipital  lobule, whereas the upper visual field is mapped in the lingula, the ventral 
occipital  lobule (van Heuven, after Fulton, 1943; Fig. 75).  About a century ago, Inouye (1909), 
and Holmes and Lister (1916) arrived at a corresponding conclusion of occipital localization in 
clinical studies of humans suffering the effects of war-related selective gunshot wounds. 

Visual radiation

VISUAL REPRESENTATION IN THE MONKEY OCCIPITAL LOBE
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Fig. 75.  Projection of the lower half of the visual field via a lateral geniculate relay to the cuneus (pink) and 
another projection of the upper half of the visual field via a lateral geniculate relay to the lingula (green), two major 
sublobules in the primary visual cortex.  (After G. J. van Heuven, in Fulton, 1943.)
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We illustrate the trajectory of the two components of the visual radiation fibers in the human brain 
(Fig. 76), as seen in dissections where the soft cortical tissue was meticulously scraped away 
in selected regions to show the distribution of the underlying tough fiber fascicles (Ludwig and 
Klingler, 1956).  That technique allows the visualization of large fiber tracts, such as the descending 
corticospinal tract traversing the basal ganglia, and the ascending thalamocortical fibers coursing 
toward the neocortex (Fig. 76A).  In Fig. 76B, the large visual radiation from the lateral geniculate 
nucleus to the occipital lobe is visualized and shown to terminate in two compartments, the dorsal 
complement in the cuneus (lower set of red arrows) and the ventral complement in the lingula 
(upper set of red arrows).  The vental radiation forms a wide fan that first courses rostrally and then 
takes a caudal turn (Meyer’s loop).

Contemporary clinical studies have confirmed these gross anatomical fiber dissections.  Separated 
by the calcarine fissure that bisects the primary visual cortex, the cuneus and the lingula receive 
topographically organized input from the retina via a relay in the lateral geniculate nucleus so that 
the lower half of the visual field maps dorsally, and the upper half of the visual field maps ventrally 
(e.g., Horton, 2006; Wandell et al., 2007; Sherbondy et al., 2008; Schira et al., 2009).  That pattern 
of projection is summarized diagrammatically in Figure 77.  As we have argued, the principal 
function of input from the upper visual field in higher primates and humans is scanning the distant 
environment with an upward gaze to detect friends and foes (approach them, fight them, or flee 
from them) and construct maps for orientation and navigation.  We call that the allocentric visual 
projection which targets the lingula.  The principal function of input from the lower visual field is 
object inspection with a gaze directed downward that gathers information about the properties of 
the objects reached for, grasped, palpated and manipulated. That egocentric visual projection tar
gets the upper occipital lobule.

the two neocortical visual systems are widely distributed.  The bisected upper vs. lower visual 
field representation extends beyond the primary visual cortex (V1d and V1v, Fig. 78) so that higher 
order dorsal and ventral visual association areas are also separated (Van Essen and Zeki, 1978; 
Gattass et al., 1988; Felleman et al., 1997a).  Outflows from the dorsal projection and association 
areas, referred to as the “dorsal stream,” target adjacent multimodal visual and haptic (touch) 
areas in the parietal cortex, whereas outflows from the dorsal projection and association areas, the 
“ventral stream,” target adjacent multimodal visual areas in the temporal cortex.  According to 
an early hypothesis (Ungerleider and Mishkin, 1982), the dorsal stream is concerned with spatial 
vision (the “where” pathway) whereas the ventral stream deals with object vision (the “what” 
pathway).  The accumulating evidence also suggests that a developmental sequence brings about 
the bisected visual pathways. 

some correpsondence between visual processing and neocortical development.  Visual processing 
and feature extraction in primates and man begins in the retina, continues in segregated layers 
of the lateral geniculate nucleus, and is greatly elaborated in the striate cortex, peristriate areas 
and several extrastriate visual areas (Hubel, 1988).  The first stage in that processing occurs in 
first-order neurons in the striate cortex to register elementary features of the retinotopic input 
from the lateral geniculate nucleus.  The second stage is the extraction of more information by 
second-order neurons in the peristriate cortex.  The third stage is the conveyance of the extracted 
information to third-order multimodal neurons in distributed loci in the parietal and temporal 



189Interpretations and Hypotheses

Topographic radiation of the 
lower visual �eld to the cuneus.

ANATOMIC DISSECTION OF FIBERS SHOWING
THE TRAJECTORY OF THE VISUAL RADIATION IN HUMANS

A
Ludwig&Klingler
Table 47

B
Ludwig&Klingler
Table 61

CuneusCuneus
Lingula
Lingula

Calcarine
�ssure
Calcarine
�ssure

Calcarine
�ssure
Calcarine
�ssure

Lateral
geniculate

nucleus

Lateral
geniculate

nucleus

Optic tractOptic tract

Optic nerve
(cut)

Optic nerve
(cut)

Optic chiasmOptic chiasm

Approximate location
of visual radiation �bers

Approximate location
of visual radiation �bersOther �bers entering

and exiting the cortex
Other �bers entering
and exiting the cortex

C o r p u s  c a l l o s u m
C o r p u s  c a l l o s u m

Cuneus

Cuneus

Cuneus �bersCuneus �bers

Lingula �bersLingula �bers

Lingula has  been removed.

Dorsal radiationDorsal radiation

Topographic radiation of the 
upper visual �eld to the lingula.

Meyer’s loopMeyer’s loop

Fig. 76.  In these dissections of the mature brain, using a special technique by Ludwig and Klingler’s (1956), the 
soft gray matter was scraped away in selected regions to show the tough fiber tracts in the white matter.  A. In this 
specimen, seen in the midsagittal view, the cuneus and lingula of the occipital lobe have been preserved but the 
white matter fiber tracts are not visible (red outlines the calcarine fissure).  B. In this horizontal preparation, shown 
in ventral view, we can follow the course of the optic tract to the lateral geniculate nucleus, and the course of the 
dorsal visual radiation to the cuneus (bottom red arrows) and the ventral radiation to the lingula (top red arrows).
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cortex, and beyond.  It is probable that the initial steps are mainly sequential and hierarchic, while 
the later steps proceed in parallel more or less simultaneously and are greatly modulated by higher-
level mnemonic and cognitive contributions.  Of interest from a developmental perspective is the 
correspondence between the stages in the functional processing of visual information and the stages 
in the development of the neocortical visual system.  Retinal cells and the optic tract develop quite 
early, and as we know from animal studies, the lateral geniculate nucleus is an early forming brain 
structure.  Pioneering visual radiation fibers that form Meyer’s loop are already present in the late 
first trimester embryos prior to the formation of the distinctive STF of the occipital lobe and before 
the smooth occipital lobe has become partitioned into two lobules by the calcarine fissure (Fig. 16).  
Occipital STF stratification and the partitioning of the occipital lobe take place during the second 
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Fig. 77.  Schematic illustration of the significance of the partitioning of the occipital 
lobe by the calcarine fissure into two lobules, the dorsal cuneus and the ventral lingula.  
The projection from the inferior retina (in green), representing the upper visual field, 
terminates through a relay in the lateral geniculate nucleus in the ventral occipital lobule.  
The projection from the superior retina (in red), representing the lower visual field, 
terminates in the dorsal occipital lobule.  The dorsal visual radiation and the cuneus map 
the individual’s self-centered (egocentric) space; the ventral visual radiation and the 
lingula map the individual’s world-centered (allocentric) space.
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trimester (Figs. 19, 20, 66B,C) and it is later, during the middle and end of the third trimester, that 
the partitioning of the two occipital lobules into sublobules commences (Figs. 68F, G).  By this 
time the occipital STF has disappeared, indicating that all the sojourning neurons have settled in 
the cortical gray matter.  We assume that the early partitioning of the occipital lobe into dorsal and 
ventral lobules reflects the onset of the structural maturation of the striate and nearby parastriate 
areas, the initial centers of visual information processing.  The later development of sublobules in 
the occipital lobe and adjacent parietal and temporal lobules suggest that the maturation of cortical 
areas responsible for higher-order multimodal information processing also develop later.  That 
interpretation is strongly supported by well-documented studies of myelination progression from 
the visual radiation, to the striate cortex, to the parastriate areas, and finally to the considerably 
delayed myelinating areas in parietal and temporal association areas (Figs. 53, 54, 56, 57).
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Fig. 78.  The hypothesis for two neocortical visual systems extends to the separation of 
upper vs. lower visual field representation in association areas.  The dorsal (egocentric 
gaze system), an occipito-parietal stream (in pink), is concerned with the coordination 
of vision involved in hand-eye coordination, such as reaching for, grasping, palpating 
and manipulating objects.  The ventral (allocentric gaze system), an occipito-temporal 
stream (in green), is concerned with object recognition, vigilance, exploration and 
orientation in the wide world.  The identification of the occipital, parietal and temporal 
components of these two systems in the human neocortex is inferential, based mainly 
on research in monkeys.
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The Mechanisms of Neocortical Gyrification.  While the functional utility of increased gyrification 
is obvious—it expands the area of the cortical gray matter without increasing the circumference of 
the cranium—the question remains what morphogenetic mechanisms are involved in the formation 
of gyri.  Can the histological evidence of neocortical development that we have reviewed here 
throw any light on this question?  To answer that affirmatively, we briefly review here what we 
have learned nearly two decades ago about the foliation of the developing rat cerebellar cortex 
(Altman and Bayer, 1997) and will examine what the two processes have in common and how they 
differ from one another.   

the lesson learned from the study of cerebellar foliation.  The embryonic rat cerebellum is 
initially an ovoid mass (Fig. 79A).  The foliation of the smooth-surfaced cerebellar cortex begins a 
few days before birth (about embryonic day 21, E21), and over a postnatal period of about 20 days 
(when the young are ready to be weaned), the fasciculating white matter sprouts radiating trunks, 
branches, and branchlets that are enveloped by a continuous canopy of the expanding cerebellar 
cortex, its lobes, lobules and sublobules.  As seen in midline sagittal plane tracings of the vermis 
(the part of the cortex that spans the midline), 4 fissures divide the smooth cerebellar cortex into 5 
lobes by E21 (Fig. 79B).  Lobule formation begins on postnatal day 1 (P1; Fig. 79C) and by P10, 
most of the lobes have become partitioned into lobules (Fig. 79D).

The great areal expansion of the cerebellar cortex in young rats and its lobulation are due to 
several interrelated developmental processes: formation of the external germinal layer; growth 
and alignment of the densely packed small Purkinje cells with their expanding dendritic arbor 
into a monolayer; the accumulation of the immense number of postnatally forming small neurons 
(granule cells) in the expanding internal granular layer; and the expansion of the molecular layer 
composed of the axons of the granule cells (the parallel fibers), the arborizing dendrites of Purkinje 
cells, and other cellular and fibrous elements.  The composition of the cerebellar white matter is 
known and relatively simple.  There are two afferent systems, the early arriving climbing fibers 
from the inferior olive and the later arriving mossy fibers.  Initially, the climbing fibers make 
contact with the early-maturing deep nuclear neurons and secondarily with the later-maturing 
Purkinje cells.  The mossy fibers come from multiple sources, including a large complement from 
the late-developing deep pontine gray nucleus (via the pontocerebellar tract) that relays input from 
the neocortex to the late descending granule cells.  There are two efferent systems: (i) an intrinsic 
one, the axons of the Purkinje cells to the deep nuclei, and (ii) an extrinsic one, the axons leaving 
the deep nuclei and targeting extracerebellar structures.  In seeking to explain the mechanisms 
involved in cerebellar foliation, we postulated that the earliest fasciculating white matter fibers 
serve as guy wires that anchor the expanding cortex at their point of contact and prevent cortical 
expansion at those points but allowing expansion around those points (Fig. 79E).  The result is 
that the fiber trunks and branches covered by the expanding cortex bulge into expanding lobes, 
and sublobules (Fig. 79F).  We could not exactly specify the anchoring elements involved, but the 
early climbing fibers that contact both the deep nuclei and the cerebellar cortex may serve as the 
guy wires that tie the depths of the primary fissures as the lobes form, while the mossy fibers to 
the internal granular layer may be involved in anchoring the secondary and tertiary fissures as the 
lobules and sublobules form.

Fig. 79 (facing page).  A. The smooth-surfaced cerebellar cortex in an 18 day (E18) rat embryo.  B. Formation 
of five lobes by 4 early fissures (F1-F4) in an E21 rat embryo as the white matter expands and fasciculates.  
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C. Formation of the first lobules in a postnatal day 1 (P1) neonate.  D. Formation of sublobules in a P10 rat infant.  
(Tracings shown at decreased magnification.)  E. Hypothesis of anchoring of the cerebellar cortex (anchors in the 
deep nucleus) by fibers acting as “guy wires” at points that become the depth of the fissures and the cerebellar cortex 
expanding around them, forming the initial lobes.  F. Six superimposed tracings of the midline vermis to show 
expansion of the cerebellar cortex and increase in the depth of fissures and in the number of sublobules between P1 
and P30.  The tracings were centered by using the fastigial nucleus as the fulcrum, and having the primary fissure 
form a straight line to the surface of the expanding cerebellar cortex.  (Modified after Atman and Bayer, 1997.)
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early gyrification in the neocortex. There are similarities between cerebellar-cortical and 
cerebral-cortical lobulation as well as major differences.  To begin with, the embryonic cerebellum 
consists initially of two separate far-lateral structures that form along the upper rhombic lip, which 
later spread medially and fuse to form a single structure, the midline vermis (Altman and Bayer, 
1997).  In contrast, the embryonic cerebrum starts as a single midline structure (the unicameral 
telencephalon) but soon becomes divided into two separate hemispheres that remain disconnected 
until the corpus callosum develops.  But there are also more important structural differences.  
Included among them, first, is that unlike the cerebellum, the neocortex receives well-segregated, 
direct input from the various sensory systems by way of relay nuclei in the thalamus.  Second, 
the cytoarchitectonics of the neocortex is far more complex and far less understood than that of 
the cerebellar cortex.  Third, the foliation of the neocortex is far more varied from individual to 
individual than is the regular foliation patterns in the cerebellar cortex.  Hence, to explain neocortical 
foliation, or gyrification, we offer the following modification of the mechanisms involved.
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Fig. 80 (facing pages).  
A.  Coronal section of 
the neocortex in a GW29 
fetus (Y14-59, 260 mm) with 
a suggestion how the originally 
smooth neocortical surface becomes 
lobulated.  Early fibers anchored in the 
thalamus (red lines) are hypothesized to 
serve as “guy wires” that resist expansion 
while neurons migrating and fibers growing 
towards the neocortex (green arrows) elevate the expanding cortex at the unanchored sites.  Note that at the 
presumed anchored sites the white matter tends to remain narrow.  B (facing page).  The smooth cortical surface 
before gyrification.  In the region where thalamic fibers arrive early, the cortical surface becomes anchored. That 
region becomes the depth of the future fissure.   C (facing page). As later arriving fibers and neurons reach the 
adjacent areas, the pressure exerted  causes the cortical surface to bulge at adjacent unanchored sites. 
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Figure 80A illustrates the initial gyrification of the neocortex in a coronal section at the level of 
the thalamus.  We hypothesize that, as in the case of the cerebellum, three processes—(i) neuronal 
proliferation, (ii) fiber increase and fasciculation, and (iii) anchoring of the cortex at certain 
points of early contact—are major factors that bring about lobulation.  Gyrification begins after a 
complement of early thalamocortical radiation fibers contact the earliest differentiating neurons of 
the cortical plate and serve as anchoring “guy wires” that resist expansion of the growing cortical 
surface at that site (Fig. 80A).  Elevation of the cortical surface commences in the surrounding 
areas as later-forming fibers and migrating neurons from the STF reach the cortical plate (Fig. 
80B).  The early fixation sites become the depths of the sulci.  As new neurons and fibers arrive 
the banks of the gyri become elevated (Fig 80C).  We illustrate this process in the paracentral lobe 
and the occipital lobe in Fig. 81.  Early arriving somatosensory fibers from the thalamus to the 
somatosensory and somatomotor cortices act as guy wires to anchor the deepest part of the central 
sulcus; the banks of the precentral and postcentral gyri appear as the neocortex expands.  Similarly, 
early fibers of the two components of the visual radiation from the lateral geniculate nucleus serve 
as guy wires in the calcarine fissure that separate the occipital lobe into the dorsal cuneus and the 
ventral lingula.  The depth of the parieto-occipital fissure may be formed by early forming fibers 
from the pulvinar to the parietal lobe (Gamberini et al., 2015).
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The subsequent process of lobular growth and sublobule formation we attribute, likewise, to 
progressive fasciculation of the white matter in conjunction with the expansion of the gray matter, 
but anchoring now shifts from the thalamus to the white matter itself.  This is illustrated in a 
comparison of matched coronal sections in GW24 (Fig. 82A) and a GW37 (Fig. 82B) fetuses.  
The white matter of the frontal lobe and temporal lobe are relatively smooth in the younger fetus 
(red line) but the older fetus shows radiating branches of white matter (green arrows) forming 
sublobules, all covered by the expanding cortical plate.  We assume that white matter branching 
is associated with two types of functional fasciculation, unimodal articulation and multimodal 
integration.
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Fig. 82.  A. The smooth configuration of the white matter in a coronal section of the midportion of the neocortex in 
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matter (red anchor).  Sublobule formation is interpreted to be the outcome of the expanding gray matter forming a 
canopy over the fiber swellings  of the white matter.
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gyrification in relation to unimodal articulation and to multimodal integration.  Human 
neocortical expansion is associated with the formation of more and more functional modules for 
better processing of the available information and the generation of more refined responses.  These 
modules are of two kinds: (i) those responsible for articulation of a single sense modality, and 
(ii) those responsible for integration from different sense modalities.  

In detail, unimodal articulation, allows the advance from perceiving only global features of an 
object (size, shape, color) to perceiving other features based on fine configurational and textural 
differences.  This is an important perceptual advance because it allows discrimination of the 
multiplicity of things and events in the environment and generates more selective behavioral 
responses.  That analytic function has been made possible, we postulate, by partitioning single 
afferent fiber tracts of the CNS into separate fascicles, each of them conveying information about 
different facets of the available information and mapping them separately onto distinct neocortical 
modules (sublobules or their components) for parallel processing (Figure 83).  In the visual system 
of higher primates for instance, that partitioning of perception has made it possible to process unique 
facial features of different individuals, the configurations of their eyes and mouths, their different 
bodily postures, and the like at separate sites in a greatly expanded neocortex with multiple gyri.  
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That articulation in the somatosensory and the somatomotor systems involves separate fascicles 
and cortical foci devoted to the tongue and mouth to allow articulated vocalization in language use, 
and extensive finger representation that permits the advance from the ability to paw an object in a 
clumsy fashion to handle it with dexterity. 

The other process serving improved perception and action is multimodal integration, the use of 
several sense modalities for a better appreciation of the different features of the same object. The 
prime example of multimodal integration is hand-eye coordination, focusing the eyes on what 
the hands and fingers are doing when skillfully manipulating and constructing objects.  That is 
made possible by integrative sublobules in the parietal lobe that receive both haptic (touch) input 
from the somatosensory cortex and visual input from the occipital lobe.  Multimodal integration 
also includes the conveyance and processing of salient input from other sources, such as relevant 
past experience, the object’s affective value, cognitive cost and benefit assessment, norms and 
value judgments, and so forth.  Multimodal integration has been made possible, we postulate, by 
the convergence of fascicles from different association areas, limbic system affective structures, 
mnemonic and computing mechanisms, and other sources to expanding sublobules that are 
dedicated to a particular function  (Fig. 84).
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 late gyrification of the neocortex.  The sublobulation of the neocortex begins during the third 
trimester, after neuron production is finished in nearly all areas, as manifested by the diminution 
or disappearance of the NEP.  At the same time neuronal migration is waning, as manifested by the 
disappearance of the STF and the decerased number of migrating neurons in the white matter (Fig. 
67).  Hence, we have to find different mechanisms to account for the subdivision of major cortical 
gyri into subgyri.  That does not depend on the increased number of neurons because most are 
already in the cortical plate.  Early thalamic fibers have already played their role in anchoring the 
anatomical features of lobes and major gyri .  We postulate instead the involvement of three new 
processes.  (i) The growth of long and short distance association and commissural axons within 
and between different cortical areas increases during gyrification.  (ii) As these association fibers 
fasciculate and branch to other cortical areas, they accumulate on the stabilized early core of white 
matter, adding to its volume by projecting upward into the newly appearing subgyri.  (iii) The gray 
matter of the cortical plate increases its linear extent and depth during dendritic maturation and the 
expansion of ingrowing axonal terminal branching.  That growth over the expanding white matter, 
further increases forces that cause more folding (gyrification) in the cortical sheet (Fig. 85).  

Late gyrification is a complex dynamic process, which may explain why their formation tends 
to be irregular with great individual variability in their configuration.  Presumably, each fiber 
bundle seeks to make maximal contact with most of the neurons in an initially flat patch of the 
cortical gray forming a spherical bulge.  But because so many fascicles compete with one another 
for connections in the same cortical area, a tug-of-war results in the formation of distorted semi-
spherical configurations of different sizes (green arrows, Fig. 85A).  This complexity would 
explain why cerebellar foliation is much more regular, brought about by a limited set of fiber 
projections (see above), compared to the neocortex.  The variability of regional gyrification in 
the human neocortex, with its far more heterogeneous inputs, displays much more regional and 
individual variability than the cerebellum.  Notwithstanding that complexity, however, the width 
of the cortical gray matter remains relatively uniform during this growth stage.  We may recall 
in this context Marin-Padilla’s (1992) hypothesis of stratification of the six-layered cortical gray 
matter.  He proposed that cortical lamination develops as the apical dendrites of early generated 
pyramidal cells become locked in place by attaching to cells in superficial layer I (the “primordial 
plexiform layer”) that contains the horizontally oriented fibers of the Cajal-Retzius cells.  As new 
neurons arrive in the cortical plate, the apical dendrites of the pyramidal cells in layers VI and V 
elongate as successive waves of younger neurons settle above them.  The larger and sturdier older 
pyramidal cells with their basal dendrites already anchored in the deep cortical layers may resist 
stretching as more and more younger neurons settle above them (especially in layers IV, III, and 
II) along the banks and crowns of subgyri. 

Fig. 85 (facing page).  A. Parasagittal section of a cerebral cortex of a GW35 fetus (Y37-60, 300 mm.) with our 
hypothesis of the two mechanisms of “anchoring” that bring about late gyrification.  Early lobe and gyral formation 
is due to the anchoring of cortical gray expansion where contact has been made with early fibers coming mainly 
from extracortical sources, i.e., thalamus (red anchor and red lines with dots).  These contacts create the depths of 
the primary fissures and early gyri with typically thin white matter beneath the cortical plate.  Later subgyrification 
is due to the invasion of fascicles (green lines with arrows) that add thickness to the already stabilized core of the 
white matter.  These new fascicles cause the white matter to project up into the later subgyri.  
B. High magnification photomicrograph of another GW35 fetus (Y133-61, 330 mm) showing the different 
thicknesses of the white matter in the ridges and depths of area V1 (striate projection area) and area V2 (visual 
association area) in the occipital lobe. 
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G.  THE FOURTH STAGE OF HUMAN NEOCORTICAL DEVELOPMENT: 
FINE CIRCUITRY FORMATION, SYNAPTOGENESIS, AND MYELOGENESIS

Postnatal Growth of the Neocortex.  The stages of neocortical development described—the 
stockpiling of proliferating precursor cells, the migration and settling of differentiating postmitotic 
neurons, and the areal differentiation and progressive gyrification of gray matter—are prenatal 
events.  Building the stock of precursor cells and the migration and settling of differentiating neurons 
are major factors in determining the total number of neocortical neurons that will be available to 
the individual.  Neocortical areal differentiation may be a factor in determining the considerable 
individual differences in behavioral and mental abilities.  Gyrification supports optimal packaging 
of the expanding gray matter, a necessity that permits the passage of the large head of the human 
neonate through the birth canal.  That packaging, however, has not allowed the newborn head of 
Homo sapiens to emerge with a mature brain, and much of neocortical development takes place 
after birth.  

The newborn’s skull consists of bones with wider, unfused sutures that allow movement during 
parturition and growth during early infancy through childhood.  Head circumference increases 
from about 34 cm at birth to a median (50th percentile) of about 51 cm at 5 years of age, with the 
increase being most rapid during the first year of life and declining after the third year (Fig. 86).  
Brain weight quadruples between birth and the end of the third year (Fig. 39).  Similar increases were 
reported for the weight of the  “forebrain” (still not an exact measure of the weight of the neocortex 
and neocortical white matter) from birth to adulthood (Dobbing and Sands, 1973).  According to 

POSTNATAL HEAD CIRCUMFERENCE VS. AGE

Fig. 86.  Median (green curve) and percentile rankings of head circumference growth in boys from birth to 5 years 
of age. (World Health Organization.) 
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recent studies based on MRI scanning of a large sample of live subjects, brain volume at birth is 
about 380-420 cm3, one-third of the adult volume (Huppi et al. 1998), and cerebral volume is about 
36% of the adult value at 2-4 weeks and 72% at 12 months (Knickmeyer et al. 2008).  Cerebral 
volume reaches about 80% of adults at 3 years, and about 90% by 9 years of age (Caviness et al., 
1996). However, according to another MRI study, the global increase of neocortical surface area is 
much smaller during the first two years of life (Li et al., 2013).  According to a recent MRI study 
with a large sample of subjects, cortical surface area expansion is the greatest during adulthood 
(Schnack et al., 2015).  In terms of regional differences in the expansion of the neocortical surface 
area from birth to adulthood, we plotted earlier Blinkov and Glezer’s (1968) data, according to 
which the occipital lobe expands 5-times, the temporal lobe 8-times, and the frontal lobe expands 
9-times from birth to adulthood (Fig. 40).  In contrast to Blinkov and Glezer’s report of great areal 
increase in the temporal and frontal cortices during the first two years of life, Li et al. (2015) report 
only a modest increase from about 350 cm2 at birth to 650 cm2 at 1 year, and to about 750 cm2 at 2 
years, with the high-growth regions being located in the association cortices, and the low-growth 
regions located in the projection areas.  The discrepancy between Glazer and Blinkov’s data, based 
on a small sample using microsocopic histology, and Li’s data with a larger sample using low-
resolution MRI remains to be clarified. 

Fine Circuitry Formation: Dendrogenesis and Synaptogenesis.  Because the production of neurons 
ceases after birth (with the hippocampus and olfactory bulb excepted; Altman and Bayer 2015), 
the postnatal growth of the cerebral cortex must be due to other factors than neurogenesis.  Much 
of the expansion of the white matter can be attributed to the growth of long- and short-distance 
associational and commissural fibers and their collaterals, but we have currently little information 
about the specifics of that process.  More is known about the progressive increase in neocortical 
gray matter volume during infancy and early childhood, and that can be broken down into several 
contributing factors: (i) increase in the size of neuronal cell bodies (perikarya); (ii) expansion of 
the neuropil, the unstained background in Nissl-stained preparations of such constituents as locally 
ramifying axons, dendrites, and dendritic spines (Fig. 45); and (iii) increase in the number of glial 
cells and their processes, growth of capillaries, and myelin formation.  The combined outcomeof 
these factors is a decrease in the packing density of neuronal perikarya stained with the Nissl 
method between birth and early childhood.  Known as the gray-cell coefficient (Haug, 1956), 
this development reflects in a nonspecific way the postnatal establishment of the fine circuitry 
of the neocortex.  The growth of dendrites in the early maturing motor cortex begins during the 
third trimester (Mrzljak et al., 1992) but their rapid expansion occurs after birth.  Using the Golgi 
technique and camera lucida drawings from birth to 6 years of age, Conel (1939-1967) illustrated 
the time course of pyramidal cell perikaryal growth and increases in the number of spines on their 
dendrites in several regions of the neocortex, (Figs. 46A-D).  Schadé and van Groningen (1961) 
quantified volumetric growth of pyramidal cell perikarya and concurrent decreases in their packing 
density between birth and adulthood in the frontal lobe.  According to that study, the increase in 
perikaryal expansion and the changes in the gray-cell coefficient with age is most pronounced in 
the pyramidal cells of layer V, and least so in cells of granular layer IV (Fig. 87).  In a more recent 
MRI study with a large sample of subjects, Li et al. (2015) reported an increase in neocortical 
thickness in the first year of postnatal life and little change during the second year.  The postnatal 
three-dimensional expansion of the dendrites of pyramidal cells in layer III and layer V of the 
prefrontal cortex has been quantified by Koenderink et al. (1994, 1995).  The specimens ranged 
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from 7.5 months to adulthood.  There was a rapid phase of expansion during the first year, a slower 
phase up to 5 years.  Thereafter, dendritic growth became stable at least up to 27 years.  According 
to Travis et al. (2005),  the dendritic length of basal dendrites of pyramidal neurons in layer V of 
neonates was higher in Brodmann’s area 4 (primary motor cortex) than in frontal area 10, and 
there was an inverse relationship in adults with greatest dendritic complexity observed in area 10.  
Much has yet to be learned about the time course of and regional differences in the cytological 
development of the human neocortical gray matter.
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Even less is known about neocortical synaptogenesis in humans.  According an initial report by 
Huttenlocher (1979), using electron microscopy, synaptic concentration increases in the middle 
frontal gyrus (prefrontal cortex) during the first two years of life and then declines between 2 
and 16 years in relation to the decrease in perikaryal density.  In a later report, Huttenlocher 
and Dabholkar (1997) compared synaptogenesis in the middle frontal gyrus and Heschl’s gyrus 
(the primary auditory cortex).  In both regions synapse formation begins at GW27 and increases 
rapidly thereafter in the auditory cortex, with maximum attained at 3 months postnatal, while in the 
prefrontal cortex synaptogenesis is more protracted and maximum synaptic density is reached at 
15 months.  This is followed by synapse pruning during childhood, which ends at 12 years of age 
in the auditory cortex and in late adolescence in the prefrontal cortex.  (Pruning in monkeys has 
recently been reviewed by Elston and Fujita, 2014).  An indirect method of studying synaptogenesis 
in humans has been the quantification of dendritic spine concentration in Golgi preparations. In 
a recent study, Petanjek et al. (2011) found that dendritic spine density in the prefrontal cortex of 
human children exceeds adult values two- to three-fold, and that the elimination of dendritic spines 
continues beyond adolescence but becomes stabilized during adulthood.  In the context of these 
studies it must be noted that data about the time course of dendritic branching and spine proliferation 
and pruning provide little information about the identity of the fibers tracts that establish synaptic 
connections in the different areas of the neocortex and to what extent the connections made are 
genetically determined and modulated by epigenetic factors, such as nutrition, health, and mental 
facilitation through training and education.  

Myelogenesis.  Axons become fully functional when they become myelinated.  Due to the process 
known as saltatory conduction—the propagation of the action potential from one node of Ranvier 
to the next by physical rather than bioelectric current spread—myelinated fibers conduct impulses 
faster and more reliably than do unmyelinated fibers. In the CNS, myelination is produced by 
oligodendroglia cells, which have cytoplasmic processes that wrap around the axon by forming 
spiral lamellae.  Myelination is preceded by the proliferation of oligodendroglia cells, known as 
myelination gliosis (Roback and Scherer, 1935; Fleischauer and Hillebrand, 1968), which produce 
myelin basic proteins and associated glycoproteins in abundance (Gilles et al, 1983; Barkovich 
et al. 1988; Poduslo and Jang, 1988).  This stage becomes manifest in myelin-stained tissues as 
fine dots or small fragments (Figs. 47-57).  Next, select fiber tracts become lightly stained, we 
referred to that stage as “myelinating,” and when that is succeeded by the tract becoming opaque, 
as “myelinated.”  As we saw, myelination of the thalamocortical and corticospinal tract fibers is 
principally a postnatal event (Figs. 48, 52-60), much delayed relative to the myelination of afferent 
and efferent fibers of subcortical structures, including the cuneate and gracile fasciculi (Fig. 47).  

The material prepared by Yakovlev and photographed and digitized by us confirms the early findings 
of Flechsig (Fig. 50) and the Vogts (Fig. 51)) that the first fiber tracts to myelinate in the cerebral 
cortex are the thalamocortical projection fibers of the precentral somatomotor cortex, the postcentral 
somatosensory cortex, and the visual fibers targeting the occipital cortex.  That myelination takes 
place in infants between the postnatal ages of 1.5 to 2.5 months, but the myelination of axons, as 
seen both in the Yakovlev and the Vogts material (Figs. 53, 54, 55D) has not yet spread into the 
cortical gray matter.  Apparently, myelination starts in “hot spots” in the core of white matter, and 
spreads from there outward into the white matter of the neocortical lobules and sublobules en 
masse.  Following that myelination in the projection areas, proliferation gliosis commences in the 
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association areas of the frontal, parietal and occipital cortex in 2.5‑months- (Fig. 55), 3‑months- 
(Fig. 56) and 4‑months-old infants (Fig. 57).  The white matter is fully myelinated in most lobules 
throughout the neocortex in the 7‑months-old infant, except in the temporal lobe (Fig. 58), and 
many of the frontal sublobules are still in the stage of myelination gliosis in the 11 months-old 
infant (Fig. 59).  Recent MRI sutdies, which provide lower resolution but in living subjects, indicate 
a similar trend (Deoni et al., 2011).  Paralleling the onset of myelination in the somatomotor cortex 
at the age of 1.5 months, the first fibers of the descending corticospinal tract reach and penetrate 
the pontine gray nucleus at about the same age (Fig. 60B).  By 8 months, all the longitudinal 
transpontine corticospinal fibers, as well as transverse pontocerebellar fibers, appear to be fully 
myelinated (Fig. 60).  Myelination spreads into the cortical gray matter at a later age.  Myelination 
probably contributes to the progressive expansion of the white matter through childhood and into 
adolescence, as indicated by the MRI scanning technique (reviewed by Giedd and Rapaport, 2010, 
and Dubois et al. 2014).  An interesting, paradoxical finding has been the phenomenon of “cortical 
thinning” or  “gray matter loss” that begins in late childhood and adolescence, and proceeds from 
projection areas to higher order association areas  (reviewed by Toga et al. 2006).  However, that 
interpretation of thinning based on MRI scans may be an erroneous one, ignoring the fact that 
an aspect of neocortical development is the spread of myelination from the white matter into the 
lower layers of the cortical gray matter (Miller er al., 2010), endowing the latter at low resolution 
with density characteristics of the white matter (Fig. 88).  

Behavioral Correlations.  Taking into consideration the upside-down map of the body 
(“homunculus”) in the somatomotor and somatosensory cortices (Penfield and Rasmussen, 1950) 
and the spread of myelination in the same areas from bottom to top, as here documented, we 
conclude that the myelination of corticospinal tract fibers representing the head region takes place 
before those of the arm and the hands, which are followed by the trunk and the legs.  This sequence 
also holds for the myelination of the corticospinal tract in the spinal cord, where fibers controlling 
upper body regions run medially and those controlling lower body regions run laterally (Foerster, 
1936); the myelination gradient in the lateral corticospinal tract exactly follows that sequence 
(Altman and Bayer, 2001).  There is a good correlation between that sequence of myelination and 
the development of voluntary control of behavior (Halverson, 1937; McGraw, 1943; Gesell, 1954; 
Forssberg, 1985) as we summarized and illustrated earlier in our book on the development of the 
human spinal cord (Altman and Bayer, 2001).   Infants begin to lift and rotate their head when 
in a supine position at about 3-4 months.  That is followed at about 4-6 months by the ability to 
use arms and hands to reach for and play with accessible objects when securely seated in a chair.  
Babies lift their trunks off the ground with extended arms by about 8 months; crawl by using arms 
and legs by 10 months; and walk upright with support at about 1 year, and without support by 1.5 
years of age.

A somewhat different developmental brain-behavior correlation holds for the acquisition of 
language through the control of the vocal cords, tongue, and lips.  Language learning may be 
dependent on the maturation, including myelination, of Broca’s and Wernicke’s areas in the frontal 
and temporal lobe association areas, respectively.  Speech begins when infants about 6 months of 
age begin to babble, learning the voluntary control of the vocal tract to produce monosyllables with 
consonants, such as “ba,” “ma,” “da,” “ga” (Lenneberg, 1967; Oller, 1980).  This is done without 
any referential meaning, as the infants babble as much when alone as when others are around.  This 
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stage is followed by producing polysyllables like “baba,” “mama,” “dadada,” “gagaga,” and by 
7-8 months the infant’s utterances begin to resemble phonologically the words their caretakers are 
using.  Infants begin to use single words by imitation and as a means of communication at about 
12 months of age but with unclear message.  The word “cookie” may mean, “I see a cookie,” “I 
want a cookie,” or “the dog eats a cookie.”  By about 14 months, the toddler may combine several 
words to deliver a message or describe an observed event, “Susie want cookie” or “mommie eat 
cookie.”   By about 2 years of age, as an aspect of cognitive development, the child has learned that 
every object, event or action has a word assigned to it and that multiple words have to be combined 
grammatically to make one’s speech unambiguous (Baldwin, 1993; Preissler and Carey, 2004; 
Plunkett et al., 2008).  Recent studies based on MRI technology suggest that word understanding 
and word speaking in toddlers are correlated with tissue changes (Aeby et al., 2013; Travis et al., 
2013) and increased myelination (Pujol et al., 2006) in language-related areas of the neocortex.   

MYELINATION PENETRATING THE CORTICAL GRAY MATTER
A INFANT B CHILD C ADOLESCENT D ADULT

Fig. 88.  Spread of myelination from the white matter into layers of the gray matter as a function of age. Sections 
representative of the motor cortex of 0-1 years infants (A); 3-9 years-old children and juveniles (B); 13-23 years-old 
adolescents and young adults (C); and adults 28 years or older (D).  After Miller et al., 2012.
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Confirmation of a maturational and a myelination gradient from the projection areas to the 
association areas of the neocortex, and in particular the protracted development of the prefrontal 
cortex provides support for the role of genetically- and epigenetically-based neural factors in the 
later development of individual differences in intelligence and executive functions (Erlenmeyer-
Kimling and Janek, 1963; Vernon, 1979).  Current studies using structural and functional 
mapping techniques (MRI, fMRI, PET scans) have implicated the prefrontal cortex in expressive 
and receptive language development (O’Muircheartaigh et al., 2014), individual differences in 
children’s IQ (Wilke et al., 2003), and in the fluid intelligence, speed of reasoning ability, and 
numerical performance of adults (e.g., Duncan et al., 2000; Geake and Hansen, 2005; Jung and 
Haier, 2007; Tang et al., 2010; Colom et al., 2013).  This relationship has been confirmed recently 
by a meta-analysis of 12 structural and 16 functional brain-imaging studies (Basten et al., 2015).  
There is an association between individual differences in intelligence, as assessed by established 
psychometric tests, and either activation of the frontal lobe when engaged in a cognitive task or 
cortical gray matter thickness.
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